login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130784
Period 3: repeat [1, 3, 2].
9
1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3
OFFSET
0,2
COMMENTS
Continued fraction expansion of (3+sqrt(37))/7 (A176977). - Klaus Brockhaus, Apr 30 2010
Pairwise sums of A010872(n). - Wesley Ivan Hurt, Jul 08 2014
Decimal expansion of 44/333. - David A. Corneth, Jul 02 2016
FORMULA
a(n) = 4 - n + 3*floor((n-1)/3). - Wesley Ivan Hurt, Nov 30 2013
a(n) = A080425(n) + 1. - Wesley Ivan Hurt, Jul 08 2014
a(n) = 3 - ((n+5) mod 3) = 1 + (-n mod 3). - Wesley Ivan Hurt, Aug 29 2014
From Robert Israel, Aug 29 2014: (Start)
a(n) = 3*a(n-1)^2/2 - 13*a(n-1)/2 + 8.
O.g.f.: (1+z)*(1+2*z)/(1-z^3).
E.g.f.: 2*exp(z) - 2/sqrt(3)*exp(-z/2)*cos(sqrt(3)*z/2+Pi/6). (End)
a(n) = a(n-3) for n>2. - Wesley Ivan Hurt, Jul 02 2016
MAPLE
A130784:=n->4-n+3*floor((n-1)/3); seq(A130784(n), n=0..100); # Wesley Ivan Hurt, Nov 30 2013
MATHEMATICA
PadRight[{}, 111, {1, 3, 2}] (* Harvey P. Dale, Apr 20 2012 *)
CoefficientList[Series[(1 + 3 x + 2 x^2)/(1 - x^3), {x, 0, 120}], x] (* Michael De Vlieger, Jul 02 2016 *)
PROG
(PARI) a(n)=[1, 3, 2][n%3+1] \\ Charles R Greathouse IV, Jun 02 2011
(Magma) [(n mod 3) + ((n+1) mod 3) : n in [0..100]]; // Wesley Ivan Hurt, Jul 08 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jul 15 2007
STATUS
approved