login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130786
Decimal expansion of the complete elliptic integral of the first kind at sqrt(2)-1.
2
1, 6, 4, 5, 5, 6, 8, 3, 9, 5, 2, 9, 3, 4, 5, 8, 0, 3, 9, 8, 6, 6, 0, 5, 1, 6, 8, 5, 2, 8, 7, 0, 7, 2, 7, 1, 5, 9, 9, 9, 5, 5, 7, 0, 2, 6, 0, 5, 5, 4, 0, 1, 0, 3, 7, 2, 6, 5, 2, 9, 2, 1, 3, 7, 1, 4, 9, 5, 7, 8, 8, 6, 3, 7, 2, 9, 3, 3, 0, 8, 7, 1, 5, 9, 3, 1, 8, 4, 1, 2, 9, 8, 3, 2, 0, 4, 8, 0, 6, 6, 5, 8, 5, 9, 9, 7
OFFSET
1,2
LINKS
H. S. Wrigge, An Elliptic Integral Identity, Math. Comp. 27 (1973) no 124, p 839.
I. J. Zucker and G. S. Joyce, Special values of the hypergeometric series II, Math. Proc. Camb. Phil. Soc. 131 (2001) 309-319 (2.4)
EXAMPLE
Equals 1.64556839529345803986605168528707271599955702605540103726529213714...
which equals K[sqrt(2)-1] = Pi^(3/2)*sqrt[2+sqrt(2)]/(4*Gamma(5/8)*Gamma(7/8))
= 5.5683279... * 1.8477590650.. / ( 4 * 1.43451884..... * 1.0896523574...).
MAPLE
evalf(EllipticK(sqrt(2)-1));
MATHEMATICA
RealDigits[Pi^(3/2)*Sqrt[2 + Sqrt@2]/(4 Gamma[5/8] Gamma[7/8]), 10, 111][[1]] (* Robert G. Wilson v, Jul 19 2007 *)
K[x_] := EllipticK[x^2/(x^2-1)]/Sqrt[1-x^2]; RealDigits[K[Sqrt[2]-1], 10, 111][[1]] (* Jean-François Alcover, Sep 22 2015 *)
PROG
(PARI) default(realprecision, 100); Pi^(3/2)*sqrt(2 + sqrt(2))/(4* gamma(5/8)*gamma(7/8)) \\ G. C. Greubel, Sep 27 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)^(3/2)*Sqrt(2 + Sqrt(2))/(4*Gamma(5/8)*Gamma(7/8)); // G. C. Greubel, Sep 27 2018
CROSSREFS
Sequence in context: A247319 A342359 A140246 * A197295 A372995 A199385
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Jul 15 2007
EXTENSIONS
More terms from Robert G. Wilson v, Jul 19 2007
STATUS
approved