login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130749
Triangle A007318*A090181 (as infinite lower triangular matrices) .
1
1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 24, 10, 1, 1, 31, 80, 60, 15, 1, 1, 63, 240, 280, 125, 21, 1, 1, 127, 672, 1120, 770, 231, 28, 1, 1, 255, 1792, 4032, 3920, 1806, 392, 36, 1, 1, 511, 4608, 13440, 17472, 11340, 3780, 624, 45, 1
OFFSET
0,5
LINKS
Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
Sherry H. F. Yan, Schroeder Paths and Pattern Avoiding Partitions, arXiv:0805.2465 [math.CO], 2008-2009; Corollary 3.6.
FORMULA
Sum_{k=0..n} T(n,k) = A007317(n+1).
G.f.: 1/(1-x-xy/(1-x/(1-x-xy/(1-x/(1-x-xy/(1-x.... (continued fraction); [Paul Barry, Jan 12 2009]
T(n,k) = Sum_{i=1..n} binomial(n, i)*N(i,k), T(n,0)=1, where N(n,k) is the triangle of Narayana numbers A001263. - Vladimir Kruchinin, Jan 08 2022
EXAMPLE
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 7, 6, 1;
1, 15, 24, 10, 1;
1, 31, 80, 60, 15, 1;
1, 63, 240, 280, 125, 21, 1;
1, 127, 672, 1120, 770, 231, 28, 1;
1, 255, 1792, 4032, 3920, 1806, 392, 36, 1;
1, 511, 4608, 13440, 17472, 11340, 3780, 624, 45, 1;
...
MATHEMATICA
nmax = 9;
T1[n_, k_] := Binomial[n, k];
T2[n_, k_] := Sum[(-1)^(j-k) Binomial[2n-j, j] Binomial[j, k] CatalanNumber[n-j], {j, 0, n}];
T[n_, k_] := Sum[T1[n, m] T2[m, k], {m, 0, n}];
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
PROG
(Maxima)
N(n, k):=(binomial(n, k-1)*binomial(n, k))/n;
T(n, k):=if k=0 then 1 else sum(binomial(n, i)*N(i, k), i, 1, n); /* Vladimir Kruchinin, Jan 08 2022 */
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Jul 13 2007
STATUS
approved