Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jan 08 2022 22:02:34
%S 1,1,1,1,3,1,1,7,6,1,1,15,24,10,1,1,31,80,60,15,1,1,63,240,280,125,21,
%T 1,1,127,672,1120,770,231,28,1,1,255,1792,4032,3920,1806,392,36,1,1,
%U 511,4608,13440,17472,11340,3780,624,45,1
%N Triangle A007318*A090181 (as infinite lower triangular matrices) .
%H Paul Barry, <a href="https://arxiv.org/abs/1807.05794">Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences</a>, arXiv:1807.05794 [math.CO], 2018.
%H Sherry H. F. Yan, <a href="http://arXiv.org/abs/0805.2465">Schroeder Paths and Pattern Avoiding Partitions</a>, arXiv:0805.2465 [math.CO], 2008-2009; Corollary 3.6.
%F Sum_{k=0..n} T(n,k) = A007317(n+1).
%F G.f.: 1/(1-x-xy/(1-x/(1-x-xy/(1-x/(1-x-xy/(1-x.... (continued fraction); [_Paul Barry_, Jan 12 2009]
%F T(n,k) = Sum_{i=1..n} binomial(n, i)*N(i,k), T(n,0)=1, where N(n,k) is the triangle of Narayana numbers A001263. - _Vladimir Kruchinin_, Jan 08 2022
%e Triangle begins:
%e 1;
%e 1, 1;
%e 1, 3, 1;
%e 1, 7, 6, 1;
%e 1, 15, 24, 10, 1;
%e 1, 31, 80, 60, 15, 1;
%e 1, 63, 240, 280, 125, 21, 1;
%e 1, 127, 672, 1120, 770, 231, 28, 1;
%e 1, 255, 1792, 4032, 3920, 1806, 392, 36, 1;
%e 1, 511, 4608, 13440, 17472, 11340, 3780, 624, 45, 1;
%e ...
%t nmax = 9;
%t T1[n_, k_] := Binomial[n, k];
%t T2[n_, k_] := Sum[(-1)^(j-k) Binomial[2n-j, j] Binomial[j, k] CatalanNumber[n-j], {j, 0, n}];
%t T[n_, k_] := Sum[T1[n, m] T2[m, k], {m, 0, n}];
%t Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 10 2018 *)
%o (Maxima)
%o N(n, k):=(binomial(n, k-1)*binomial(n, k))/n;
%o T(n, k):=if k=0 then 1 else sum(binomial(n, i)*N(i, k), i, 1, n); /* _Vladimir Kruchinin_, Jan 08 2022 */
%Y Cf. A000012, A000225, A001788, A003472 ; A000012, A000217, A014205.
%K nonn,tabl
%O 0,5
%A _Philippe Deléham_, Jul 13 2007