login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130656
Interlacing n^3/2 and n^2(n + 1)/2.
2
1, 4, 18, 32, 75, 108, 196, 256, 405, 500, 726, 864, 1183, 1372, 1800, 2048, 2601, 2916, 3610, 4000, 4851, 5324, 6348, 6912, 8125, 8788, 10206, 10976, 12615, 13500, 15376, 16384, 18513, 19652, 22050, 23328, 26011, 27436, 30420, 32000, 35301, 37044
OFFSET
1,2
FORMULA
a(n) = n^2 * floor((n + 1)/2).
G.f.: x*(1+3*x+11*x^2+5*x^3+4*x^4)/((1-x)^4*(1+x)^3). - R. J. Mathar, Sep 09 2008
a(n) = a(n-1)+ 3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7), a(1)=1, a(2)=4, a(3)=18, a(4)=32, a(5)=75, a(6)=108, a(7)=196. - Harvey P. Dale, Feb 18 2015
Sum_{n>=1} 1/a(n) = zeta(3)/4 + Pi^2/4 - 2*log(2). - Amiram Eldar, Mar 15 2024
MAPLE
A130656:=n->n^2 * floor((n + 1)/2): seq(A130656(n), n=1..100); # Wesley Ivan Hurt, Jan 21 2017
MATHEMATICA
a[n_Integer] := n^2 * Floor[(n + 1)/2]
LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {1, 4, 18, 32, 75, 108, 196}, 50] (* Harvey P. Dale, Feb 18 2015 *)
CROSSREFS
Cf. A093005 (quadratic equivalent), A065423 (linear equivalent).
Sequence in context: A120407 A033166 A049726 * A292161 A346866 A363640
KEYWORD
easy,nonn
AUTHOR
Olivier Gérard, Jun 21 2007
STATUS
approved