OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
FORMULA
a(n) = n^2 * floor((n + 1)/2).
G.f.: x*(1+3*x+11*x^2+5*x^3+4*x^4)/((1-x)^4*(1+x)^3). - R. J. Mathar, Sep 09 2008
a(n) = a(n-1)+ 3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7), a(1)=1, a(2)=4, a(3)=18, a(4)=32, a(5)=75, a(6)=108, a(7)=196. - Harvey P. Dale, Feb 18 2015
Sum_{n>=1} 1/a(n) = zeta(3)/4 + Pi^2/4 - 2*log(2). - Amiram Eldar, Mar 15 2024
MAPLE
MATHEMATICA
a[n_Integer] := n^2 * Floor[(n + 1)/2]
LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {1, 4, 18, 32, 75, 108, 196}, 50] (* Harvey P. Dale, Feb 18 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Olivier Gérard, Jun 21 2007
STATUS
approved