login
A130424
Main diagonal of array A[k,n] = n-th sum of k consecutive k-gonal numbers, k>2.
1
4, 30, 125, 365, 854, 1724, 3135, 5275, 8360, 12634, 18369, 25865, 35450, 47480, 62339, 80439, 102220, 128150, 158725, 194469, 235934, 283700, 338375, 400595, 471024, 550354, 639305, 738625, 849090, 971504, 1106699, 1255535, 1418900
OFFSET
1,1
COMMENTS
The first row of the array is the sum of 3 consecutive triangular numbers = A000217(n) + A000217(n+1) + A000217(n+2) = Centered triangular numbers: 3*n*(n-1)/2 + 1, for n>1. The second row of the array is the sum of 4 consecutive squares = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 = A027575(n). The third row of the array is the sum of 5 consecutive pentagonal numbers.
LINKS
Eric Weisstein's World of Mathematics, Polygonal Number.
FORMULA
a(n) = A[n+2,n] = P(k+2,n) + P(k+2,n+1) + P(k+2,n+2) + ... P(k+2,n+k-1) where P(k,n) = k*((n-2)*k - (n-4))/2.
a(n) = (n+2)*(7*n^3-8*n^2+12*n-3)/6. [R. J. Mathar, Oct 30 2008]
G.f.: x*(4+10*x+15*x^2-x^4)/(1-x)^5. [Colin Barker, Sep 08 2012]
EXAMPLE
The array begins:
k / A[k,n]
3.|...4..10..19...31...46...64...85..109.136.166...=A005448(n+1).
4.|..14..30..54...86..126..174..230..294.366.446...=A027575(n).
5.|..40..75.125..190..270..365..475..600.740...
6.|..95.161.251..365..503..665..851.1061.1295...
7.|.196.308.455..637..854.1106.1393.1715.2072...
8.|.364.540.764.1036.1356.1724.2140.2604.3116...
MAPLE
P := proc(k, n) n*((k-2)*n-k+4)/2 ; end: A := proc(k, n) add( P(k, i), i=n..n+k-1) ; end: A130424 := proc(n) A(n+3, n) ; end: seq(A130424(n), n=0..40) ; # R. J. Mathar, Oct 28 2007
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {4, 30, 125, 365, 854}, 50] (* Harvey P. Dale, Jun 23 2020 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 26 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 28 2007
STATUS
approved