The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129920 Expansion of -1/(1 - x + 3*x^2 - 2*x^3 + x^4 - 2*x^5 + x^6). 1
 -1, -1, 2, 3, -4, -10, 5, 29, 2, -76, -45, 178, 212, -361, -750, 565, 2282, -306, -6206, -2428, 15176, 14353, -32719, -55104, 57933, 176234, -61524, -499047, -97429, 1271400, 921652, -2887641, -3948938, 5590078, 13380187, -7828378, -39536779, 108416, 104810904 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS The Knot Atlas, L6a1 Index entries for linear recurrences with constant coefficients, signature (1,-3,2,-1,2,-1). FORMULA G.f.: 1/(x^(9/2)*f(x)), where f(x) = -x^(3/2) + 2*x^(1/2) - 1/x^(1/2) + 2/x^(3/2) - 3/x^(5/2) + 1/x^(7/2) - 1/x^(9/2) is the Jones Polynomial for the link with Dowker-Thistlethwaite notation L6a1. a(n) = a(n-1) - 3*a(n-2) + 2*a(n-3) - a(n-4) + 2*a(n-5) - a(n-6), n >= 6. - Franck Maminirina Ramaharo, Jan 08 2019 MATHEMATICA CoefficientList[Series[-1/(1 - x + 3*x^2 - 2*x^3 + x^4 - 2*x^5 + x^6), {x, 0, 50}], x] CROSSREFS Cf. A008620, A010892, A014019, A099443, A099479, A099480, A125629, A112712, A129704, A129903. Sequence in context: A255479 A256618 A140598 * A065634 A087548 A111619 Adjacent sequences:  A129917 A129918 A129919 * A129921 A129922 A129923 KEYWORD sign,easy AUTHOR Roger L. Bagula, Jun 05 2007 EXTENSIONS Edited by Franck Maminirina Ramaharo, Jan 08 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 11:31 EST 2021. Contains 349596 sequences. (Running on oeis4.)