login
A129588
Expansion of q^-1 * theta_2(q)^4 in powers of q^2.
2
16, 64, 96, 128, 208, 192, 224, 384, 288, 320, 512, 384, 496, 640, 480, 512, 768, 768, 608, 896, 672, 704, 1248, 768, 912, 1152, 864, 1152, 1280, 960, 992, 1664, 1344, 1088, 1536, 1152, 1184, 1984, 1536, 1280, 1936, 1344, 1728, 1920, 1440
OFFSET
0,1
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
K. Bobek, Einleitung in die Theorie der elliptischen Funktionen, Teubner Leipzig, 1884, p. 101.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f. Sum_{k>=0} a(k)*q^(2*k + 1) = theta2(q)^4 = theta3(q)^4 - theta4(q)^4.
Expansion of 16 * psi(x)^4 in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jun 11 2007
Number of solutions of 2*n + 1 = (x^2 + y^2 + z^2 + w^2) / 4 in odd integers. - Michael Somos, Jun 11 2007
G.f.: 16 * (Product_{k>0} (1 - x^k) * (1 + x^k)^2)^4. - Michael Somos, Jun 11 2007
a(n) = 16*A008438(n) = A000118(n) - A096727(n).
EXAMPLE
G.f. = 16 + 64*x + 96*x^2 + 128*x^3 + 208*x^4 + 192*x^5 + 224*x^6 + ...
G.f. = 16*q + 64*q^3 + 96*x^5 + 128*q^7 + 208*q^9 + 192*q^11 + 224*q^13 + ...
MATHEMATICA
a[n_]:= SeriesCoefficient[q^(-1/2)*EllipticTheta[2, 0, q^(1/2)]^4, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 15 2018 *)
CoefficientList[Series[x^(-1/2)*EllipticTheta[2, 0, x^(1/2)]^4, {x, 0, 50}], x] (* Vaclav Kotesovec, Apr 16 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, 16 * sigma(2*n + 1))}; /* Michael Somos, Jun 11 2007 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, May 30 2007
STATUS
approved