login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129383
Expansion of g(x) - x*g(x^2), where g(x) is the g.f. of A001405.
2
1, 0, 2, 2, 6, 8, 20, 32, 70, 120, 252, 452, 924, 1696, 3432, 6400, 12870, 24240, 48620, 92252, 184756, 352464, 705432, 1351616, 2704156, 5199376, 10400600, 20056584, 40116600, 77555328, 155117520, 300533760, 601080390, 1166790240
OFFSET
0,3
COMMENTS
Partial sums are A129384.
LINKS
FORMULA
G.f.: 2/(1-2*x+sqrt(1-4*x^2)) - 2*x/(1-2*x^2+sqrt(1-4*x^4)).
a(n) = binomial(n,floor(n/2)) - (1/2)*(1-(-1)^n)*binomial((n-1)/2, floor((n-1)/4)).
MATHEMATICA
A129383[n_]:= With[{B=Binomial, F=Floor}, B[n, F[n/2]] - Mod[n, 2]*B[(n- 1)/2, F[(n-1)/4]]];
Table[A129383[n], {n, 0, 40}] (* G. C. Greubel, Feb 03 2024 *)
PROG
(Magma)
A129383:= func< n | Binomial(n, Floor(n/2)) - (n mod 2)*Binomial(Floor((n-1)/2), Floor((n-1)/4)) >;
[A129383(n): n in [0..40]]; // G. C. Greubel, Feb 03 2024
(SageMath)
def A129383(n): return binomial(n, n//2) - (n%2)*binomial((n-1)/2, (n-1)//4)
[A129383(n) for n in range(41)] # G. C. Greubel, Feb 03 2024
CROSSREFS
Sequence in context: A355640 A370586 A276425 * A052957 A275441 A197465
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 12 2007
STATUS
approved