login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129380
Partial sums of A129379.
3
1, 3, 6, 12, 48, 336, 3696, 59136, 1300992, 37728768, 1395964416, 64214363136, 3596004335616, 240932290486272, 19033650948415488, 1751095887254224896, 185616164048947838976, 22459555849922688516096
OFFSET
1,2
LINKS
FORMULA
a(n) = A129379(n+1)/A000217(n-2) for n>2.
a(n) = a(n-1) + A129379(n) for n > 1, a(1) = 1.
From G. C. Greubel, Feb 03 2024: (Start)
a(n) = (6/2^(n-3))*|Pochhammer((3+i*sqrt(7))/2, n-3)|^2, for n > 2.
a(n) = (3/2^(n-3))*Product_{k=0..n-2} (k^2 - k + 2), for n > 2.
a(n) = (1/2)*(n^2 - 5*n + 8)*a(n-1), with a(1) = 1, a(2) = 3, a(3) = 6. (End)
From Vaclav Kotesovec, Feb 03 2024: (Start)
For n>=3, a(n) = 3 * cosh(sqrt(7)*Pi/2) * 2^(3-n) * Gamma(n - 3/2 - i*sqrt(7)/2) * Gamma(n - 3/2 + i*sqrt(7)/2)/Pi, where i is the imaginary unit.
a(n) ~ 3 * cosh(sqrt(7)*Pi/2) * n^(2*n-4) / (2^(n-4) * exp(2*n)). (End)
MATHEMATICA
a[n_]:= a[n]= If[n<4, Binomial[n+1, 2], (n^2-5*n+8)*a[n-1]/2];
Table[a[n], {n, 40}] (* G. C. Greubel, Feb 03 2024 *)
Round[Flatten[{{1, 3}, Table[(3*2^(3-n) * Cosh[Sqrt[7]*Pi/2] * Gamma[n - 3/2 - I*Sqrt[7]/2] * Gamma[n - 3/2 + I*Sqrt[7]/2])/Pi, {n, 3, 20}]}]] (* Vaclav Kotesovec, Feb 03 2024 *)
PROG
(Magma)
A129380:= func< n | n le 2 select 2*n-1 else (3/2^(n-2))*(&*[k^2-k+2: k in [0..n-2]]) >;
[A129380(n): n in [1..40]]; // G. C. Greubel, Feb 03 2024
(SageMath)
def A129380(n): return 2*n-1 if n<3 else 3*product(j^2-j+2 for j in range(n-1))//2^(n-2)
[A129380(n) for n in range(1, 41)] # G. C. Greubel, Feb 03 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 14 2007
STATUS
approved