login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g(x) - x*g(x^2), where g(x) is the g.f. of A001405.
2

%I #7 Feb 03 2024 16:18:31

%S 1,0,2,2,6,8,20,32,70,120,252,452,924,1696,3432,6400,12870,24240,

%T 48620,92252,184756,352464,705432,1351616,2704156,5199376,10400600,

%U 20056584,40116600,77555328,155117520,300533760,601080390,1166790240

%N Expansion of g(x) - x*g(x^2), where g(x) is the g.f. of A001405.

%C Partial sums are A129384.

%H G. C. Greubel, <a href="/A129383/b129383.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: 2/(1-2*x+sqrt(1-4*x^2)) - 2*x/(1-2*x^2+sqrt(1-4*x^4)).

%F a(n) = binomial(n,floor(n/2)) - (1/2)*(1-(-1)^n)*binomial((n-1)/2, floor((n-1)/4)).

%t A129383[n_]:= With[{B=Binomial,F=Floor}, B[n,F[n/2]] - Mod[n,2]*B[(n- 1)/2, F[(n-1)/4]]];

%t Table[A129383[n], {n,0,40}] (* _G. C. Greubel_, Feb 03 2024 *)

%o (Magma)

%o A129383:= func< n | Binomial(n,Floor(n/2)) - (n mod 2)*Binomial(Floor((n-1)/2),Floor((n-1)/4)) >;

%o [A129383(n): n in [0..40]]; // _G. C. Greubel_, Feb 03 2024

%o (SageMath)

%o def A129383(n): return binomial(n,n//2) - (n%2)*binomial((n-1)/2,(n-1)//4)

%o [A129383(n) for n in range(41)] # _G. C. Greubel_, Feb 03 2024

%Y Cf. A001405, A129384.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Apr 12 2007