OFFSET
1,2
COMMENTS
Row sums of A129234. - Emeric Deutsch, Apr 17 2007
Equals row sums of A130307. - Gary W. Adamson, May 20 2007
Equals row sums of triangle A143315. - Gary W. Adamson, Aug 06 2008
Equals A051731 * (1, 3, 5, 7, ...); i.e., the inverse Mobius transform of the odd numbers. Example: a(4) = 11 = (1, 1, 0, 1) * (1, 3, 5, 7) = (1 + 3 + 0 + 7), where (1, 1, 0, 1) = row 4 of A051731. - Gary W. Adamson, Aug 17 2008
Equals row sums of triangle A143594. - Gary W. Adamson, Aug 26 2008
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
FORMULA
G.f.: Sum_{k>=1} z^k*(k-(k-1)*z^k)/(1-z^k)^2. - Emeric Deutsch, Apr 17 2007
G.f.: Sum_{n>=1} x^n*(1+x^n)/(1-x^n)^2. - Joerg Arndt, May 25 2011
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(2-1/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 18 2018
EXAMPLE
a(4) = 2*sigma(4) - tau(4) = 2*7 - 3 = 11.
MAPLE
with(numtheory): seq(2*sigma(n)-tau(n), n=1..75); # Emeric Deutsch, Apr 17 2007
G:=sum(z^k*(k-(k-1)*z^k)/(1-z^k)^2, k=1..100): Gser:=series(G, z=0, 80): seq(coeff(Gser, z, n), n=1..75); # Emeric Deutsch, Apr 17 2007
MATHEMATICA
a[n_] := DivisorSum[2n, If[EvenQ[#], #-1, 0]&]; Array[a, 70] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
Table[2*DivisorSigma[1, n]-DivisorSigma[0, n], {n, 80}] (* Harvey P. Dale, Aug 07 2022 *)
PROG
(PARI) a(n)=sumdiv(2*n, d, if(d%2==0, d-1, 0 ) ); /* Joerg Arndt, Oct 07 2012 */
(PARI) a(n) = 2*sigma(n)-numdiv(n); \\ Altug Alkan, Mar 18 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Apr 05 2007
EXTENSIONS
Edited by Emeric Deutsch, Apr 17 2007
STATUS
approved