login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129235
a(n) = 2*sigma(n) - tau(n), where tau(n) is the number of divisors of n (A000005) and sigma(n) is the sum of divisors of n (A000203).
11
1, 4, 6, 11, 10, 20, 14, 26, 23, 32, 22, 50, 26, 44, 44, 57, 34, 72, 38, 78, 60, 68, 46, 112, 59, 80, 76, 106, 58, 136, 62, 120, 92, 104, 92, 173, 74, 116, 108, 172, 82, 184, 86, 162, 150, 140, 94, 238, 111, 180, 140, 190, 106, 232, 140, 232, 156, 176, 118, 324, 122, 188
OFFSET
1,2
COMMENTS
Row sums of A129234. - Emeric Deutsch, Apr 17 2007
Equals row sums of A130307. - Gary W. Adamson, May 20 2007
Equals row sums of triangle A143315. - Gary W. Adamson, Aug 06 2008
Equals A051731 * (1, 3, 5, 7, ...); i.e., the inverse Mobius transform of the odd numbers. Example: a(4) = 11 = (1, 1, 0, 1) * (1, 3, 5, 7) = (1 + 3 + 0 + 7), where (1, 1, 0, 1) = row 4 of A051731. - Gary W. Adamson, Aug 17 2008
Equals row sums of triangle A143594. - Gary W. Adamson, Aug 26 2008
LINKS
FORMULA
G.f.: Sum_{k>=1} z^k*(k-(k-1)*z^k)/(1-z^k)^2. - Emeric Deutsch, Apr 17 2007
G.f.: Sum_{n>=1} x^n*(1+x^n)/(1-x^n)^2. - Joerg Arndt, May 25 2011
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(2-1/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 18 2018
a(n) = A222548(n) - A222548(n-1). - Ridouane Oudra, Jul 11 2020
EXAMPLE
a(4) = 2*sigma(4) - tau(4) = 2*7 - 3 = 11.
MAPLE
with(numtheory): seq(2*sigma(n)-tau(n), n=1..75); # Emeric Deutsch, Apr 17 2007
G:=sum(z^k*(k-(k-1)*z^k)/(1-z^k)^2, k=1..100): Gser:=series(G, z=0, 80): seq(coeff(Gser, z, n), n=1..75); # Emeric Deutsch, Apr 17 2007
MATHEMATICA
a[n_] := DivisorSum[2n, If[EvenQ[#], #-1, 0]&]; Array[a, 70] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
Table[2*DivisorSigma[1, n]-DivisorSigma[0, n], {n, 80}] (* Harvey P. Dale, Aug 07 2022 *)
PROG
(PARI) a(n)=sumdiv(2*n, d, if(d%2==0, d-1, 0 ) ); /* Joerg Arndt, Oct 07 2012 */
(PARI) a(n) = 2*sigma(n)-numdiv(n); \\ Altug Alkan, Mar 18 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Apr 05 2007
EXTENSIONS
Edited by Emeric Deutsch, Apr 17 2007
STATUS
approved