The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129235 a(n) = 2*sigma(n) - tau(n), where tau(n) is the number of divisors of n (A000005) and sigma(n) is the sum of divisors of n (A000203). 11
 1, 4, 6, 11, 10, 20, 14, 26, 23, 32, 22, 50, 26, 44, 44, 57, 34, 72, 38, 78, 60, 68, 46, 112, 59, 80, 76, 106, 58, 136, 62, 120, 92, 104, 92, 173, 74, 116, 108, 172, 82, 184, 86, 162, 150, 140, 94, 238, 111, 180, 140, 190, 106, 232, 140, 232, 156, 176, 118, 324, 122, 188 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Row sums of A129234. - Emeric Deutsch, Apr 17 2007 Equals row sums of A130307. - Gary W. Adamson, May 20 2007 Equals row sums of triangle A143315. - Gary W. Adamson, Aug 06 2008 Equals A051731 * (1, 3, 5, 7, ...); i.e., the inverse Mobius transform of the odd numbers. Example: a(4) = 11 = (1, 1, 0, 1) * (1, 3, 5, 7) = (1 + 3 + 0 + 7), where (1, 1, 0, 1) = row 4 of A051731. - Gary W. Adamson, Aug 17 2008 Equals row sums of triangle A143594. - Gary W. Adamson, Aug 26 2008 LINKS G. C. Greubel, Table of n, a(n) for n = 1..5000 FORMULA G.f.: Sum_{k>=1} z^k*(k-(k-1)*z^k)/(1-z^k)^2. - Emeric Deutsch, Apr 17 2007 G.f.: Sum_{n>=1} x^n*(1+x^n)/(1-x^n)^2. - Joerg Arndt, May 25 2011 L.g.f.: -log(Product_{k>=1} (1 - x^k)^(2-1/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 18 2018 a(n) = A222548(n) - A222548(n-1). - Ridouane Oudra, Jul 11 2020 EXAMPLE a(4) = 2*sigma(4) - tau(4) = 2*7 - 3 = 11. MAPLE with(numtheory): seq(2*sigma(n)-tau(n), n=1..75); # Emeric Deutsch, Apr 17 2007 G:=sum(z^k*(k-(k-1)*z^k)/(1-z^k)^2, k=1..100): Gser:=series(G, z=0, 80): seq(coeff(Gser, z, n), n=1..75); # Emeric Deutsch, Apr 17 2007 MATHEMATICA a[n_] := DivisorSum[2n, If[EvenQ[#], #-1, 0]&]; Array[a, 70] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *) Table[2*DivisorSigma[1, n]-DivisorSigma[0, n], {n, 80}] (* Harvey P. Dale, Aug 07 2022 *) PROG (PARI) a(n)=sumdiv(2*n, d, if(d%2==0, d-1, 0 ) ); /* Joerg Arndt, Oct 07 2012 */ (PARI) a(n) = 2*sigma(n)-numdiv(n); \\ Altug Alkan, Mar 18 2018 CROSSREFS Cf. A129234, A129236, A129237. Cf. A000005, A000203. Cf. A130307. Cf. A051731, A143315, A143594. Sequence in context: A356755 A109378 A132149 * A012903 A273103 A187215 Adjacent sequences: A129232 A129233 A129234 * A129236 A129237 A129238 KEYWORD nonn AUTHOR Gary W. Adamson, Apr 05 2007 EXTENSIONS Edited by Emeric Deutsch, Apr 17 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 2 04:55 EST 2024. Contains 370460 sequences. (Running on oeis4.)