login
A129238
Permutations with exactly 11 fixed points.
3
1, 0, 78, 728, 12285, 192192, 3279640, 59001696, 1121107806, 22421988160, 470862104076, 10358965584240, 238256209789598, 5718149032454208, 142953725815812600, 3716796871203401440, 100353515522504876775
OFFSET
11,3
FORMULA
a(n) = A008290(n,11).
E.g.f.: exp(-x)/(1-x)*(x^11/11!) . [Zerinvary Lajos, Apr 03 2009]
O.g.f.: (1/11!)*Sum_{k>=11} k!*x^k/(1 + x)^(k+1). - Ilya Gutkovskiy, Apr 15 2017
MAPLE
a:=n->sum(n!*sum((-1)^k/(k-10)!, j=0..n), k=10..n): seq(a(n)/11!, n=10..27);
restart: G(x):=exp(-x)/(1-x)*(x^11/11!): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=11..27); # Zerinvary Lajos, Apr 03 2009
MATHEMATICA
With[{nn=40}, Drop[CoefficientList[Series[Exp[-x]/(1 - x) x^11/11!, {x, 0, nn}], x]Range[0, nn]!, 11]] (* Vincenzo Librandi, Feb 19 2014 *)
PROG
(PARI) x='x+O('x^66); Vec( serlaplace(exp(-x)/(1-x)*(x^11/11!)) ) \\ Joerg Arndt, Feb 19 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Zerinvary Lajos, May 25 2007
EXTENSIONS
Changed offset from 0 to 11 by Vincenzo Librandi, Feb 19 2014
Edited by Joerg Arndt, Feb 19 2014
STATUS
approved