login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129238 Permutations with exactly 11 fixed points. 9
1, 0, 78, 728, 12285, 192192, 3279640, 59001696, 1121107806, 22421988160, 470862104076, 10358965584240, 238256209789598, 5718149032454208, 142953725815812600, 3716796871203401440, 100353515522504876775 (list; graph; refs; listen; history; text; internal format)
OFFSET

11,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 11..200

FORMULA

E.g.f.: exp(-x)/(1-x)*(x^11/11!) . [Zerinvary Lajos, Apr 03 2009]

O.g.f.: (1/11!)*Sum_{k>=11} k!*x^k/(1 + x)^(k+1). - Ilya Gutkovskiy, Apr 15 2017

MAPLE

a:=n->sum(n!*sum((-1)^k/(k-10)!, j=0..n), k=10..n): seq(a(n)/11!, n=10..27);

restart: G(x):=exp(-x)/(1-x)*(x^11/11!): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=11..27); # Zerinvary Lajos, Apr 03 2009

MATHEMATICA

With[{nn=40}, Drop[CoefficientList[Series[Exp[-x]/(1 - x) x^11/11!, {x, 0, nn}], x]Range[0, nn]!, 11]] (* Vincenzo Librandi, Feb 19 2014 *)

PROG

(PARI) x='x+O('x^66); Vec( serlaplace(exp(-x)/(1-x)*(x^11/11!)) ) \\ Joerg Arndt, Feb 19 2014

CROSSREFS

Cf. A008290, A000166, A000240, A000387, A000449, A000475, A129135, A129136, A129149, A129153, A129217, A129218, A129255, A008291, A170942.

Sequence in context: A087600 A126994 A220409 * A297759 A147619 A119093

Adjacent sequences:  A129235 A129236 A129237 * A129239 A129240 A129241

KEYWORD

nonn

AUTHOR

Zerinvary Lajos, May 25 2007

EXTENSIONS

Changed offset from 0 to 11 by Vincenzo Librandi, Feb 19 2014

Edited by Joerg Arndt, Feb 19 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 08:04 EDT 2020. Contains 334712 sequences. (Running on oeis4.)