

A129234


Triangle read by rows: T(n,k)=n/k + k  1 if n mod k = 0; otherwise T(n,k)=0 (1<=k<=n).


6



1, 2, 2, 3, 0, 3, 4, 3, 0, 4, 5, 0, 0, 0, 5, 6, 4, 4, 0, 0, 6, 7, 0, 0, 0, 0, 0, 7, 8, 5, 0, 5, 0, 0, 0, 8, 9, 0, 5, 0, 0, 0, 0, 0, 9, 10, 6, 0, 0, 6, 0, 0, 0, 0, 10, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 12, 7, 6, 6, 0, 7, 0, 0, 0, 0, 0, 12, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 14, 8, 0, 0, 0, 0, 8, 0, 0, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Row sums = A129235: (1, 4, 6, 11, 10, 20, 14,...). Moebius transform of A129234 = A129236. Inverse Moebius transform of A129234 = A129237.


LINKS

Table of n, a(n) for n=1..101.


FORMULA

G.f.=G(t,z)=Sum[t^k*z^k*[k(k1)z^k]/(1z^k)^2, k=1..infinity).  Emeric Deutsch, Apr 17 2007


EXAMPLE

First few rows of the triangle are:
1;
2, 2;
3, 0, 3;
4, 3, 0, 4;
5, 0, 0, 0, 5;
6, 4, 4, 0, 0, 6;
7, 0, 0, 0, 0, 0, 7;
...


MAPLE

T:=proc(n, k) if n mod k = 0 then n/k+k1 else 0 fi end: for n from 1 to 16 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form  Emeric Deutsch, Apr 17 2007


CROSSREFS

Cf. A129235, A129236, A129237.
Sequence in context: A103516 A233558 A319929 * A213081 A127446 A046157
Adjacent sequences: A129231 A129232 A129233 * A129235 A129236 A129237


KEYWORD

nonn,tabl


AUTHOR

Gary W. Adamson, Apr 05 2007


EXTENSIONS

Edited by Emeric Deutsch, Apr 17 2007


STATUS

approved



