login
A103516
Triangle read by rows: count in a vee.
4
1, 2, 2, 3, 0, 3, 4, 0, 0, 4, 5, 0, 0, 0, 5, 6, 0, 0, 0, 0, 6, 7, 0, 0, 0, 0, 0, 7, 8, 0, 0, 0, 0, 0, 0, 8, 9, 0, 0, 0, 0, 0, 0, 0, 9, 10, 0, 0, 0, 0, 0, 0, 0, 0, 10, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Row sums are A103517, antidiagonal sums are A187012.
FORMULA
Number triangle T(n, k)=if(k<=n, 0^(k(n-k))*(n+1), 0)
EXAMPLE
Triangle begins
1,
2, 2,
3, 0, 3,
4, 0, 0, 4,
5, 0, 0, 0, 5,
6, 0, 0, 0, 0, 6,
7, 0, 0, 0, 0, 0, 7,
8, 0, 0, 0, 0, 0, 0, 8,
...
MATHEMATICA
Join[{1}, Flatten[Table[Flatten[Join[{n, PadRight[{}, n-2, 0], n}]], {n, 2, 15}]]] (* Harvey P. Dale, Mar 23 2013 *)
PROG
(PARI) tabl(nn) = {for (i=1, nn, for (j=1, i, if (j == 1, t = i, if (j==i, t = i, t = 0)); print1(t, ", "); ); print(); ); } \\ Michel Marcus, Aug 30 2013
CROSSREFS
Sequence in context: A294898 A297114 A318448 * A233558 A319929 A129234
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 09 2005
STATUS
approved