The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103517 Expansion of (1+2*x-x^2)/(1-x)^2. 9
 1, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums of A103516. Also the number of maximal and maximum cliques in the (n+1) X (n+1) rook graph. - Eric W. Weisstein, Sep 14 2017 Also the number of maximal and maximum independent vertex sets in the (n+1) X (n+1) rook complement graph. - Eric W. Weisstein, Sep 14 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Maximal Clique Eric Weisstein's World of Mathematics, Maximum Clique Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set Eric Weisstein's World of Mathematics, Maximum Independent Vertex Set Eric Weisstein's World of Mathematics, Rook Complement Graph Eric Weisstein's World of Mathematics, Rook Graph Index entries for linear recurrences with constant coefficients, signature (2,-1). FORMULA a(n) = 2*n + 2 - 0^n. a(n) = Sum_{k=0..n} 0^(k(n-k))*(n+1). Equals binomial transform of [1, 3, -1, 1, -1, 1, ...]. - Gary W. Adamson, Apr 23 2008 a(n) = 2*a(n-1) - a(n-2) for n > 2. - Eric W. Weisstein, Sep 14 2017 G.f.: (1 + 2*x - x^2)/(-1 + x)^2. - Eric W. Weisstein, Sep 14 2017 MAPLE with(numtheory):seq(ceil(mcombine(n, 2*n, 3*n, 4*n)/2), n=1..63); # Zerinvary Lajos, Apr 11 2008 MATHEMATICA CoefficientList[Series[(-z^2 + 2*z + 1)/(z - 1)^2, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 10 2011 *) CoefficientList[Series[2/(x - 1)^2 - 1, {x, 0, 62}], x] (* Robert G. Wilson v, Jan 29 2015 *) Join[{1}, 2 Range[2, 20]] (* Eric W. Weisstein, Sep 14 2017 *) Join[{1}, LinearRecurrence[{2, -1}, {4, 6}, 20]] (* Eric W. Weisstein, Sep 14 2017 *) PROG (Magma) [1] cat [2*n+2 : n in [1..60]]; // Wesley Ivan Hurt, Dec 07 2016 CROSSREFS Cf. A103516. Essentially the same as A004277, A005843, A051755, and A076032. - R. J. Mathar, Jul 31 2010 Sequence in context: A175074 A063127 A272651 * A163300 A193175 A093161 Adjacent sequences: A103514 A103515 A103516 * A103518 A103519 A103520 KEYWORD easy,nonn AUTHOR Paul Barry, Feb 09 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 09:50 EST 2022. Contains 358517 sequences. (Running on oeis4.)