login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103517
Expansion of (1+2*x-x^2)/(1-x)^2.
10
1, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126
OFFSET
0,2
COMMENTS
Row sums of A103516.
Also the number of maximal and maximum cliques in the (n+1) X (n+1) rook graph. - Eric W. Weisstein, Sep 14 2017
Also the number of maximal and maximum independent vertex sets in the (n+1) X (n+1) rook complement graph. - Eric W. Weisstein, Sep 14 2017
LINKS
Eric Weisstein's World of Mathematics, Maximal Clique
Eric Weisstein's World of Mathematics, Maximum Clique
Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
Eric Weisstein's World of Mathematics, Maximum Independent Vertex Set
Eric Weisstein's World of Mathematics, Rook Complement Graph
Eric Weisstein's World of Mathematics, Rook Graph
FORMULA
a(n) = 2*n + 2 - 0^n.
a(n) = Sum_{k=0..n} 0^(k(n-k))*(n+1).
Equals binomial transform of [1, 3, -1, 1, -1, 1, ...]. - Gary W. Adamson, Apr 23 2008
a(n) = 2*a(n-1) - a(n-2) for n > 2. - Eric W. Weisstein, Sep 14 2017
G.f.: (1 + 2*x - x^2)/(-1 + x)^2. - Eric W. Weisstein, Sep 14 2017
MAPLE
a := n -> 2*(n + 1) - 0^n: seq(a(n), n = 0..62); # Peter Luschny, May 12 2023
MATHEMATICA
CoefficientList[Series[(-z^2 + 2*z + 1)/(z - 1)^2, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 10 2011 *)
CoefficientList[Series[2/(x - 1)^2 - 1, {x, 0, 62}], x] (* Robert G. Wilson v, Jan 29 2015 *)
Join[{1}, 2 Range[2, 20]] (* Eric W. Weisstein, Sep 14 2017 *)
Join[{1}, LinearRecurrence[{2, -1}, {4, 6}, 20]] (* Eric W. Weisstein, Sep 14 2017 *)
PROG
(Magma) [1] cat [2*n+2 : n in [1..60]]; // Wesley Ivan Hurt, Dec 07 2016
CROSSREFS
Cf. A103516.
Essentially the same as A004277, A005843, A051755, and A076032. - R. J. Mathar, Jul 31 2010
Cf. A272651 (for which this sequence is a conjectured continuation for large n).
Sequence in context: A175074 A063127 A272651 * A163300 A193175 A093161
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 09 2005
STATUS
approved