login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128966 Triangle read by rows of coefficients of polynomials P[n](x) defined by P[0]=0, P[1]=x+1; for n >= 2, P[n]=(x+1)*P[n-1]+x*P[n-2]. 5
0, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 10, 6, 1, 1, 8, 20, 20, 8, 1, 1, 10, 34, 50, 34, 10, 1, 1, 12, 52, 104, 104, 52, 12, 1, 1, 14, 74, 190, 258, 190, 74, 14, 1, 1, 16, 100, 316, 552, 552, 316, 100, 16, 1, 1, 18, 130, 490, 1058, 1362, 1058, 490, 130, 18, 1, 1, 20, 164 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

A variant of A008288 (they satisfy the same recurrence).

LINKS

Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened

FORMULA

P[n](x) = (x+1) * ( ((x+1+sqrt(x^2+6x+1))/2)^n - ((x+1-sqrt(x^2+6x+1))/2)^n ) / sqrt(x^2+6x+1) - Max Alekseyev, Mar 10 2008

P[n](x) = (x+1) * (sqrt(x)*I)^(n-1) * U[n-1](-I*(x+1)/sqrt(x)/2), where U[n](t) is Chebyshev polynomial of the 2nd kind. - Max Alekseyev, Mar 10 2008

EXAMPLE

Triangle begins:

0

1, 1

1, 2, 1

1, 4, 4, 1

1, 6, 10, 6, 1

1, 8, 20, 20, 8, 1

1, 10, 34, 50, 34, 10, 1

1, 12, 52, 104, 104, 52, 12, 1

1, 14, 74, 190, 258, 190, 74, 14, 1

1, 16, 100, 316, 552, 552, 316, 100, 16, 1

MAPLE

P[0]:=0;

P[1]:=x+1;

for n from 2 to 14 do

P[n]:=expand((x+1)*P[n-1]+x*P[n-2]);

lprint(P[n]);

lprint(seriestolist(series(P[n], x, 200)));

od:

MATHEMATICA

t[n_, k_] := 2^(1-n)*Binomial[n, k]*Sum[Binomial[n, 2*m+1]*HypergeometricPFQ[{-k, -m, k-n}, {1/2-n/2, -n/2}, -1], {m, 0, (n-1)/2}]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jan 09 2014, after Max Alekseyev *)

PROG

(PARI) { T(n, k) = sum(m=0, (n-1)\2, binomial(n, 2*m+1) * sum(j=0, m, binomial(m, j) * binomial(n-2*j, k-j) * 2^(2*j+1-n) ) ) } - Max Alekseyev, Mar 10 2008

(Haskell)

a128966 n k = a128966_tabl !! n !! k

a128966_row n = a128966_tabl !! n

a128966_tabl = map fst $ iterate

   (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $

                      zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([0], [1, 1])

-- Reinhard Zumkeller, Jul 20 2013

CROSSREFS

Cf. A163271 (row sums), A110170 (central terms).

Cf. A102413.

Sequence in context: A156580 A157528 A132731 * A055907 A259698 A274643

Adjacent sequences:  A128963 A128964 A128965 * A128967 A128968 A128969

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, May 10 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 19:16 EDT 2019. Contains 327137 sequences. (Running on oeis4.)