login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128964
a(n) = (n^3-n)*6^n.
9
0, 216, 5184, 77760, 933120, 9797760, 94058496, 846526464, 7255941120, 59861514240, 478892113920, 3735358488576, 28524555730944, 213934167982080, 1579821548175360, 11510128422420480, 82872924641427456, 590469588070170624, 4168020621671792640, 29176144351702548480
OFFSET
1,2
FORMULA
From R. J. Mathar, Dec 19 2008: (Start)
G.f.: 216*x^2/(1-6*x)^4.
a(n) = 216*A081144(n+1). (End)
a(n) = 24*a(n-1) - 216*a(n-2) + 864*a(n-3) - 1296*a(n-4). - Vincenzo Librandi, Feb 11 2013
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=2} 1/a(n) = 25*log(6/5)/12 - 3/8.
Sum_{n>=2} (-1)^n/a(n) = 49*log(7/6)/12 - 5/8. (End)
a(n) = A007531(n+1)*A000400(n). - Amiram Eldar, Oct 02 2022
MATHEMATICA
CoefficientList[Series[216 x/(1 - 6 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 11 2013 *)
PROG
(Magma) [(n^3-n)*6^n: n in [0..25]]; (* or *) I:=[0, 216, 5184, 77760]; [n le 4 select I[n] else 24*Self(n-1) -216*Self(n-2) +864*Self(n-3) -1296*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Apr 28 2007
EXTENSIONS
Corrected offset. - Mohammad K. Azarian, Nov 20 2008
STATUS
approved