login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows of coefficients of polynomials P[n](x) defined by P[0]=0, P[1]=x+1; for n >= 2, P[n]=(x+1)*P[n-1]+x*P[n-2].
5

%I #16 Apr 15 2014 16:51:18

%S 0,1,1,1,2,1,1,4,4,1,1,6,10,6,1,1,8,20,20,8,1,1,10,34,50,34,10,1,1,12,

%T 52,104,104,52,12,1,1,14,74,190,258,190,74,14,1,1,16,100,316,552,552,

%U 316,100,16,1,1,18,130,490,1058,1362,1058,490,130,18,1,1,20,164

%N Triangle read by rows of coefficients of polynomials P[n](x) defined by P[0]=0, P[1]=x+1; for n >= 2, P[n]=(x+1)*P[n-1]+x*P[n-2].

%C A variant of A008288 (they satisfy the same recurrence).

%H Reinhard Zumkeller, <a href="/A128966/b128966.txt">Rows n = 0..125 of triangle, flattened</a>

%F P[n](x) = (x+1) * ( ((x+1+sqrt(x^2+6x+1))/2)^n - ((x+1-sqrt(x^2+6x+1))/2)^n ) / sqrt(x^2+6x+1) - _Max Alekseyev_, Mar 10 2008

%F P[n](x) = (x+1) * (sqrt(x)*I)^(n-1) * U[n-1](-I*(x+1)/sqrt(x)/2), where U[n](t) is Chebyshev polynomial of the 2nd kind. - _Max Alekseyev_, Mar 10 2008

%e Triangle begins:

%e 0

%e 1, 1

%e 1, 2, 1

%e 1, 4, 4, 1

%e 1, 6, 10, 6, 1

%e 1, 8, 20, 20, 8, 1

%e 1, 10, 34, 50, 34, 10, 1

%e 1, 12, 52, 104, 104, 52, 12, 1

%e 1, 14, 74, 190, 258, 190, 74, 14, 1

%e 1, 16, 100, 316, 552, 552, 316, 100, 16, 1

%p P[0]:=0;

%p P[1]:=x+1;

%p for n from 2 to 14 do

%p P[n]:=expand((x+1)*P[n-1]+x*P[n-2]);

%p lprint(P[n]);

%p lprint(seriestolist(series(P[n],x,200)));

%p od:

%t t[n_, k_] := 2^(1-n)*Binomial[n, k]*Sum[Binomial[n, 2*m+1]*HypergeometricPFQ[{-k, -m, k-n}, {1/2-n/2, -n/2}, -1], {m, 0, (n-1)/2}]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 09 2014, after _Max Alekseyev_ *)

%o (PARI) { T(n,k) = sum(m=0,(n-1)\2, binomial(n,2*m+1) * sum(j=0,m, binomial(m,j) * binomial(n-2*j,k-j) * 2^(2*j+1-n) ) ) } - _Max Alekseyev_, Mar 10 2008

%o (Haskell)

%o a128966 n k = a128966_tabl !! n !! k

%o a128966_row n = a128966_tabl !! n

%o a128966_tabl = map fst $ iterate

%o (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $

%o zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([0], [1, 1])

%o -- _Reinhard Zumkeller_, Jul 20 2013

%Y Cf. A163271 (row sums), A110170 (central terms).

%Y Cf. A102413.

%K nonn,tabl

%O 0,5

%A _N. J. A. Sloane_, May 10 2007