

A128161


Numbers k such that 2^k modulo Fibonacci(k) is prime, i.e., A057862(k) is prime.


2



5, 7, 9, 13, 14, 19, 25, 88, 100, 113, 130, 440, 503, 2800, 3203, 3346, 4357, 6496, 8822, 16316, 20039, 22381, 30481, 33779, 71864, 110390, 127796, 441190, 457249
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Corresponding primes in A057862 are {2, 11, 2, 37, 173, 1663, 18257, 447876604131364627, 55437674149894825801, ...}.


LINKS



MAPLE

select(n>isprime(2 &^n mod combinat:fibonacci(n)), [$1..3000]); # Muniru A Asiru, Jul 17 2018


MATHEMATICA

Do[f=PowerMod[2, n, Fibonacci[n]]; If[PrimeQ[f], Print[{n, f}]], {n, 1, 503}]


PROG

(PFGW)
ABC2 2^$a % F($a)
a: from 5 to 1000000


CROSSREFS



KEYWORD

hard,more,nonn


AUTHOR



EXTENSIONS



STATUS

approved



