The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128159 a(n) = least k such that the remainder when 19^k is divided by k is n. 26
 2, 17, 358, 5, 7, 13, 118, 11, 22, 207, 14, 6683, 21, 1055, 221, 6843, 86, 39959, 23, 559, 34, 129, 26, 25, 51, 799, 334, 33, 166, 47427581, 1537, 901, 68, 39, 326, 87169, 44, 161, 46, 3509, 341, 529, 106, 1098179, 158, 657, 314, 49621349, 75, 143, 62, 749, 116 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(447) = 7987803178, a(660) = 11147676413, a(923) = 6246715274. - Daniel Morel, Jun 08 2010 a(216) = 21686254249, a(296) = 40778012377, a(386) = 15891209603, a(582) = 46530896443, a(638) = 15297472657, a(736) = 45211411479, a(872) = 106458212591. - Daniel Morel, Oct 15 2010 LINKS MATHEMATICA t = Table[0, {10000} ]; k = 1; While[ k < 3100000000, a = PowerMod[19, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 04 2009 *) clk=Compile[{{n, _Integer}}, {k=1}; While[PowerMod[19, k, k]!=n, k++]; k]; Array[ clk, 55] (* Harvey P. Dale, May 10 2014 *) CROSSREFS Cf. A036236, A078457, A119678, A119679, A127816, A119715, A119714, A127817, A127818, A127819, A127820, A127821, A128154, A128155, A128156, A128157, A128158, A128160. Cf. A128149, A128150. Sequence in context: A307315 A330260 A243509 * A319591 A198405 A202972 Adjacent sequences:  A128156 A128157 A128158 * A128160 A128161 A128162 KEYWORD hard,nonn AUTHOR Alexander Adamchuk, Feb 16 2007 EXTENSIONS More terms from Ryan Propper, Mar 24 2007 More terms from Robert G. Wilson v, Aug 04 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 22:05 EDT 2021. Contains 347546 sequences. (Running on oeis4.)