login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243509
O.g.f.: exp( Integral Sum_{n>=1} (2*n)! * x^(n-1) / Product_{k=1..2*n} (1 - k*x) dx ).
1
1, 2, 17, 356, 15050, 1090340, 120880118, 19006269152, 4019815232183, 1100169446737862, 378260919290968391, 159596027891781179588, 81074448438738151958144, 48811678984945504941033320, 34368839633409849003075848348, 27981522156103308265337853752864
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 2*x + 17*x^2 + 356*x^3 + 15050*x^4 + 1090340*x^5 +...
The logarithmic derivative equals the series:
A'(x)/A(x) = 2!/((1-x)*(1-2*x)) + 4!*x/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) + 6!*x^2/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)) + 8!*x^3/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)*(1-7*x)*(1-8*x)) + 10!*x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)*(1-7*x)*(1-8*x)*(1-9*x)*(1-10*x)) +...
Explicitly, the logarithm of the o.g.f. begins:
log(A(x)) = 2*x + 30*x^2/2 + 974*x^3/3 + 57030*x^4/4 + 5280302*x^5/5 + 710771670*x^6/6 + 131223143774*x^7/7 +...
PROG
(PARI) {a(n)=polcoeff(exp(intformal(sum(m=1, n+1, (2*m)!*x^(m-1)/prod(k=1, 2*m, 1-k*x+x*O(x^n))))), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A243486.
Sequence in context: A378044 A373324 A330260 * A128159 A319591 A198405
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 05 2014
STATUS
approved