login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127823
Weighted Catalan numbers: number of combinatorial types of plane Morse links of order n.
1
1, 1, 10, 325, 22150, 2586250, 461242900, 116651486125, 39713286199150, 17511670912894750, 9709015945443877900, 6610669330703494665250, 5422712627276230973347900, 5274585355686671613655544500
OFFSET
0,3
COMMENTS
a(n) has the same number of factors of 2 as does A000108(n) (Catalan numbers). "Given a sequence of integers b = (b_0,b_1,b_2,...) one gives a Dyck path P of length 2n the weight wt(P) = b_{h_1} b_{h_2} ... b_{h_n}, where h_i is the height of the i-th ascent of P. The corresponding weighted Catalan number is C_n^b = sum_P wt(P), where the sum is over all Dyck paths of length 2n. So in particular, the ordinary Catalan numbers C_n correspond to b_i = 1 for all i >= 0. Let xi(n) stand for the base two exponent of n, i.e., the largest power of 2 dividing n. We give a condition on b which implies that xi(C_n^b) = xi(C_n). In the special case b_i=(2i+1)^2, this settles a conjecture of Postnikov about the number of plane Morse links." - Alexander Postnikov, Bruce Sagan.
LINKS
Yibo Gao, Andrew Gu, Arithmetic of weighted Catalan numbers, arXiv:1908.03914 [math.CO], 2019.
Alexander Postnikov, Bruce Sagan, What power of two divides a weighted Catalan number?, arXiv:math/0601339 [math.CO], 2006.
Sarah Shader, Weighted Catalan Numbers and Their Divisibility Properties, Research Science Institute, MIT, 2014.
FORMULA
O.g.f.: A(x) = 1/(1-x/(1-3^2*x/(1-5^2*x/(1-.../(1 - (2*n-1)^2*x/(1-... )))))) (continued fraction).
G.f.: 1/Q(0), where Q(k) = 1 - (2*k+1)^2*x/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 17 2013
a(n) = the upper left term in M^n where M is an infinite square production matrix; M[i,j] = A016754(i-1) = (2*i-1)^2, i >= 1 and 1 <= j <= i+1, and M[i,j] = 0, i >= 1 and j >= i+2, see the examples. - Gary W. Adamson, Jul 18 2011
G.f.: Q(0), where Q(k) = 1 - x*(4*k+1)^2/( x*(4*k+1)^2 - 1/(1 - x*(4*k+3)^2/( x*(4*k+3)^2 - 1/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Oct 09 2013
a(n) ~ 2^(6*n + 1) * n^(2*n - 1/2) / (exp(2*n) * Pi^(2*n + 1/2)). - Vaclav Kotesovec, Aug 26 2017
EXAMPLE
From Gary W. Adamson, Jul 18 2011: (Start)
The first few rows of matrix M are:
1, 1, 0, 0, 0, ...
9, 9, 9, 0, 0, ...
25, 25, 25, 25, 0, ...
49, 49, 49, 49, 49, ...
(End)
MAPLE
nmax:=13: M := Matrix(1..nmax+1, 1..nmax+1): for i from 1 to nmax do for j from 1 to i+1 do M[i, j]:= (2*i-1)^2 od: od: for n from 0 to nmax do B:=M^n: a(n):=B[1, 1] od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Jul 21 2011
MATHEMATICA
nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[(2*Range[nmax + 1]-1)^2*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 26 2017 *)
PROG
(PARI) {a(n)=local(CF=1/(1-(2*n+1)^2*x+x*O(x^n))); if(n==0, CF=1, for(i=1, n, CF=1/(1-(2*(n-i)+1)^2*x*CF))); polcoeff(CF, n)}
CROSSREFS
Sequence in context: A223298 A164055 A064343 * A257132 A218996 A352798
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 30 2007
STATUS
approved