login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127826
Coefficients of L-series for elliptic curve "256a1": y^2 = x^3 + x^2 - 3*x + 1.
1
1, -2, 0, 0, 1, -6, 0, 0, -6, -2, 0, 0, -5, 4, 0, 0, 12, 0, 0, 0, 6, 10, 0, 0, -7, 12, 0, 0, 4, -6, 0, 0, 0, 14, 0, 0, -2, 10, 0, 0, -11, -18, 0, 0, -18, 0, 0, 0, 10, -6, 0, 0, 0, -6, 0, 0, 18, 0, 0, 0, 25, -12, 0, 0, -20, -18, 0, 0, 6, -22, 0, 0, 0, 14, 0, 0, -6, 0, 0, 0, 0, -2, 0, 0, -13, -2, 0, 0, 12, -18, 0, 0, 0, 36
OFFSET
0,2
FORMULA
a(n)=b(2n+1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1+(-1)^e)/2*(-p^2)^(e/2) if p == 5,7 (mod 8), b(p^e) = b(p)*b(p^(e-1)) - p*b(p^(e-2)) if p == 1,3 (mod 8) and b(p) = 2*x*(-1)^((x mod 8 > 4) + (y mod 4) > 0) where p = x^2 + 2*y^2.
a(4n+2)=a(4n+3)=0.
Expansion of q^(-1/2) * eta(q^8)^8 / (eta(q^4) * eta(q^16))^2 * (eta(q^4) / eta(q^16) - 2 * eta(q^16) / eta(q^4)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = -64 (t/i)^2 f(t) where q = exp(2 Pi i t).
EXAMPLE
q - 2*q^3 + q^9 - 6*q^11 - 6*q^17 - 2*q^19 - 5*q^25 + 4*q^27 + 12*q^33 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(-1/2)* eta[q^8]^8/(eta[q^4]*eta[q^16])^2*(eta[q^4]/eta[q^16] - 2*eta[q^16] /eta[q^4]), {q, 0, 150}], q]; Table[a[[n]], {n, 1, 100}] (* G. C. Greubel, Jul 25 2018 *)
PROG
(Magma) f := qEigenform(EllipticCurve(CremonaDatabase(), "256a1"), 188); [ Coefficient(f, n) : n in [ k : k in [0..188] | IsOdd(k) ] ] ; /* Klaus Brockhaus, Feb 01 2007 */
(PARI) {a(n)=local(A, p, e, x, y); if(n<0, 0, n=2*n+1; A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 0, if(p%8>4, if(e%2, 0, (-p)^(e/2)), for(i=1, sqrtint(p\2), if(issquare(p-2*i^2, &x), y=i; break)); a0=1; a1=y=2*x*(-1)^((x%8>4)+(y%4>0)); for(i=2, e, x=y*a1-p*a0; a0=a1; a1=x); a1))))) }
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^(n\4)); polcoeff( eta(x^2+A)^8/ eta(x+A)^2/ eta(x^4+A)^2* ((n%4==0)*eta(x+A)/eta(x^4+A) -(n%4==1)*2*eta(x^4+A)/eta(x+A)), n\4))}
(PARI) {a(n) = ellak( ellinit([0, 1, 0, -3, 1], 1), 2*n + 1)}
CROSSREFS
Convolution of A138515(q^4) and A112172.
Sequence in context: A138497 A295858 A113129 * A228866 A109983 A332409
KEYWORD
sign
AUTHOR
Michael Somos, Jan 30 2007
STATUS
approved