Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 08 2022 08:45:29
%S 1,-2,0,0,1,-6,0,0,-6,-2,0,0,-5,4,0,0,12,0,0,0,6,10,0,0,-7,12,0,0,4,
%T -6,0,0,0,14,0,0,-2,10,0,0,-11,-18,0,0,-18,0,0,0,10,-6,0,0,0,-6,0,0,
%U 18,0,0,0,25,-12,0,0,-20,-18,0,0,6,-22,0,0,0,14,0,0,-6,0,0,0,0,-2,0,0,-13,-2,0,0,12,-18,0,0,0,36
%N Coefficients of L-series for elliptic curve "256a1": y^2 = x^3 + x^2 - 3*x + 1.
%H G. C. Greubel, <a href="/A127826/b127826.txt">Table of n, a(n) for n = 0..1000</a>
%H W. Stein, <a href="http://wstein.org/Tables/">Modular Forms Database</a>.
%F a(n)=b(2n+1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1+(-1)^e)/2*(-p^2)^(e/2) if p == 5,7 (mod 8), b(p^e) = b(p)*b(p^(e-1)) - p*b(p^(e-2)) if p == 1,3 (mod 8) and b(p) = 2*x*(-1)^((x mod 8 > 4) + (y mod 4) > 0) where p = x^2 + 2*y^2.
%F a(4n+2)=a(4n+3)=0.
%F Expansion of q^(-1/2) * eta(q^8)^8 / (eta(q^4) * eta(q^16))^2 * (eta(q^4) / eta(q^16) - 2 * eta(q^16) / eta(q^4)) in powers of q.
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = -64 (t/i)^2 f(t) where q = exp(2 Pi i t).
%e q - 2*q^3 + q^9 - 6*q^11 - 6*q^17 - 2*q^19 - 5*q^25 + 4*q^27 + 12*q^33 + ...
%t eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(-1/2)* eta[q^8]^8/(eta[q^4]*eta[q^16])^2*(eta[q^4]/eta[q^16] - 2*eta[q^16] /eta[q^4]), {q, 0, 150}], q]; Table[a[[n]], {n, 1, 100}] (* _G. C. Greubel_, Jul 25 2018 *)
%o (Magma) f := qEigenform(EllipticCurve(CremonaDatabase(), "256a1"), 188); [ Coefficient(f, n) : n in [ k : k in [0..188] | IsOdd(k) ] ] ; /* _Klaus Brockhaus_, Feb 01 2007 */
%o (PARI) {a(n)=local(A, p, e, x, y); if(n<0, 0, n=2*n+1; A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 0, if(p%8>4, if(e%2, 0, (-p)^(e/2)), for(i=1, sqrtint(p\2), if(issquare(p-2*i^2, &x), y=i; break)); a0=1; a1=y=2*x*(-1)^((x%8>4)+(y%4>0)); for(i=2,e, x=y*a1-p*a0; a0=a1; a1=x); a1))))) }
%o (PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^(n\4)); polcoeff( eta(x^2+A)^8/ eta(x+A)^2/ eta(x^4+A)^2* ((n%4==0)*eta(x+A)/eta(x^4+A) -(n%4==1)*2*eta(x^4+A)/eta(x+A)),n\4))}
%o (PARI) {a(n) = ellak( ellinit([0, 1, 0, -3, 1], 1), 2*n + 1)}
%Y Convolution of A138515(q^4) and A112172.
%K sign
%O 0,2
%A _Michael Somos_, Jan 30 2007