|
|
A127620
|
|
Number of walks from (0,0) to (n,n) in the region 0 <= x-y <= 6 with the steps (1,0), (0, 1), (2,0) and (0,2).
|
|
3
|
|
|
1, 1, 5, 22, 117, 654, 3843, 22882, 137443, 827998, 4995443, 30155494, 182083275, 1099560942, 6640309323, 40101959542, 242184540139, 1462610652718, 8833070227499, 53345145429670, 322164911643723, 1945636121710110
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..21.
Arvind Ayyer and Doron Zeilberger, The Number of [Old-Time] Basketball games with Final Score n:n where the Home Team was never losing but also never ahead by more than w Points, arXiv:math/0610734 [math.CO], 2006-2007.
Index entries for linear recurrences with constant coefficients, signature (6, 5, -24, -28, -6, 8).
|
|
FORMULA
|
G.f.: (1 - 5x - 6x^2 + 11x^3 + 12x^4 - 4x^5)/(1 - 6x - 5x^2 + 24x^3 + 28x^4 + 6x^5 - 8x^6). [corrected by Jean-François Alcover, Apr 02 2019]
|
|
EXAMPLE
|
a(2)=5 because we can reach (2,2) in the following ways:
(0,0),(1,0),(1,1),(2,1),(2,2)
(0,0),(2,0),(2,2)
(0,0),(1,0),(2,0),(2,2)
(0,0),(2,0),(2,1),(2,2)
(0,0),(1,0),(2,0),(2,1),(2,2)
|
|
MATHEMATICA
|
b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n-k <= 6];
T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-1, k]* T[n-1, k] + b[n-2, k]*T[n-2, k] + b[n, k-1]*T[n, k-1] + b[n, k-2]*T[n, k-2]; T[_, _] = 0;
a[n_] := T[n, n];
Table[a[n], {n, 0, 21}]
(* or: *)
LinearRecurrence[{6, 5, -24, -28, -6, 8}, {1, 1, 5, 22, 117, 654}, 22] (* Jean-François Alcover, Apr 02 2019 *)
|
|
CROSSREFS
|
Cf. A000108, A046717, A122951, A127617, A127618, A127619.
Sequence in context: A005033 A127618 A127619 * A122951 A331836 A184181
Adjacent sequences: A127617 A127618 A127619 * A127621 A127622 A127623
|
|
KEYWORD
|
nonn,easy,walk
|
|
AUTHOR
|
Arvind Ayyer, Jan 20 2007
|
|
STATUS
|
approved
|
|
|
|