The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127619 Number of walks from (0,0) to (n,n) in the region 0 <= x-y <= 5 with the steps (1,0), (0, 1), (2,0) and (0,2). 3
 1, 1, 5, 22, 117, 654, 3674, 20763, 117349, 663529, 3751874, 21215245, 119963514, 678345474, 3835772387, 21689760681, 122646936325, 693519457822, 3921575652821, 22174944672838, 125390459051898, 709032985366923 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Arvind Ayyer and Doron Zeilberger, The Number of [Old-Time] Basketball games with Final Score n:n where the Home Team was never losing but also never ahead by more than w Points, arXiv:math/0610734 [math.CO], 2006-2007. Index entries for linear recurrences with constant coefficients, signature (5, 6, -11, -12, 4). FORMULA G.f.: (1-4x-6x^2+2x^3)/(1-5x-6x^2+11x^3+12x^4-4x^5). [Typo corrected by Jean-François Alcover, Dec 10 2018] EXAMPLE a(2)=5 because we can reach (2,2) in the following ways: (0,0),(1,0),(1,1),(2,1),(2,2) (0,0),(2,0),(2,2) (0,0),(1,0),(2,0),(2,2) (0,0),(2,0),(2,1),(2,2) (0,0),(1,0),(2,0),(2,1),(2,2) MATHEMATICA LinearRecurrence[{5, 6, -11, -12, 4}, {1, 1, 5, 22, 117}, 22] (* Jean-François Alcover, Dec 10 2018 *) b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n - k <= 5]; T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-2, k]* T[n-2, k] + b[n-1, k]*T[n-1, k] + b[n, k-2]*T[n, k-2] + b[n, k-1]*T[n, k-1]; T[_, _] = 0; a[n_] := T[n, n]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Apr 03 2019 *) CROSSREFS Cf. A000108, A046717, A122951, A127617, A127618, A127620. Sequence in context: A355398 A005033 A127618 * A127620 A122951 A331836 Adjacent sequences: A127616 A127617 A127618 * A127620 A127621 A127622 KEYWORD nonn,easy,walk AUTHOR Arvind Ayyer, Jan 20 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 1 18:13 EDT 2023. Contains 361695 sequences. (Running on oeis4.)