login
A127617
Number of walks from (0,0) to (n,n) in the region 0 <= x-y <= 3 with the steps (1,0), (0, 1), (2,0) and (0,2).
4
1, 1, 5, 22, 92, 395, 1684, 7189, 30685, 130973, 559038, 2386160, 10184931, 43472696, 185556025, 792015257, 3380586357, 14429474710, 61589830404, 262886022219, 1122085581740, 4789437042413, 20442921249973, 87257234103245, 372443097062686, 1589711867161816
OFFSET
0,3
FORMULA
G.f.: (1 - 2*x - 3*x^2) / (1 - 3*x - 5*x^2 - 2*x^3 + x^4).
a(n) = 3*a(n-1)+5*a(n-2)+2*a(n-3)-a(n-4). - Vincenzo Librandi, Dec 13 2018
EXAMPLE
a(2)=5 because we can reach (2,2) in the following ways:
(0,0),(1,0),(1,1),(2,1),(2,2)
(0,0),(2,0),(2,2)
(0,0),(1,0),(2,0),(2,2)
(0,0),(2,0),(2,1),(2,2)
(0,0),(1,0),(2,0),(2,1),(2,2)
MAPLE
seq(coeff(series((1-2*x-3*x^2)/(1-3*x-5*x^2-2*x^3+x^4), x, n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Dec 10 2018
MATHEMATICA
LinearRecurrence[{3, 5, 2, -1}, {1, 1, 5, 22}, 23] (* Jean-François Alcover, Dec 10 2018 *)
CoefficientList[Series[(1 - 2 x - 3 x^2) / (1 - 3 x - 5 x^2 - 2 x^3 + x^4), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 13 2018 *)
b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n-k <= 3];
T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-2, k]* T[n-2, k] + b[n-1, k]*T[n-1, k] + b[n, k-2]*T[n, k-2] + b[n, k-1]*T[n, k-1]; T[_, _] = 0;
a[n_] := T[n, n];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 03 2019 *)
PROG
(Magma) I:=[1, 1, 5, 22]; [n le 4 select I[n] else 3*Self(n-1)+5*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 13 2018
CROSSREFS
KEYWORD
nonn,easy,walk
AUTHOR
Arvind Ayyer, Jan 20 2007
STATUS
approved