OFFSET
1,1
COMMENTS
The polynomials are of the form (x-prime(i))*(x-prime(i+1))*..*(x-prime(i+4)). The quadratic terms have coefficients which are of the form -sum_{j<k<l} prime(j)*prime(k)*prime(l), summing over all 10 =C(5,3) combinations of products of three distinct primes in the range prime(i) to prime(i+4). If half of the absolute (sign-reversed) coefficient is prime, it is added to the sequence.
EXAMPLE
The first contribution is from the 11th polynomial, (x-prime(11)) *(x-prime(12)) *(x-prime(13)) *(x-prime(14)) *(x-prime(15)) = x^5 -199x^4 +15766x^3 -621466x^2 +12185065x -95041567,
where the coefficient of [x^2] is -621466. Its sign-reversed half is 310733, a prime.
MAPLE
isA127491 := proc(k)
local x, j, p ;
mul( x-ithprime(k+j), j=0..4) ;
expand(%) ;
abs(coeff(%, x, 2)/2) ;
isprime(%)
end proc:
A127491k := proc(n)
option remember ;
if n = 0 then
0;
else
for k from procname(n-1)+1 do
if isA127491(k) then
return k ;
end if;
end do:
end if;
end proc:
A127491 := proc(n)
option remember ;
local k ;
k := A127491k(n) ;
mul( x-ithprime(k+j), j=0..4) ;
expand(%) ;
abs(coeff(%, x, 2)/2) ;
end proc:
seq(A127491(n), n=1..60) ; # R. J. Mathar, Apr 23 2023
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Artur Jasinski, Jan 16 2007
EXTENSIONS
Entries replaced to comply with the definition. - R. J. Mathar, Sep 26 2011
STATUS
approved