login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127489
a(n) is the coefficient of the linear term in the polynomial (x-prime(n))*(x-prime(n+1))*(x-prime(n+2))*(x-prime(n+3))*(x-prime(n+4)).
7
2927, 12673, 48457, 136489, 342889, 745945, 1480489, 2760049, 5070049, 8292889, 12185065, 18656761, 27138729, 37294369, 53106049, 73698049, 95048089, 120087129, 153503149, 192747937, 247731385, 321039529, 396584569, 485290729
OFFSET
1,1
COMMENTS
Arithmetic derivative (see A003415) of prime(n)*prime(n+1)*prime(n+2)*prime(n+3)*prime(n+4). [Giorgio Balzarotti, May 26 2011]
EXAMPLE
a(1) is the coefficient of the linear term of (x-2)*(x-3)*(x-5)*(x-7)*(x-11).
This polynomial is -2310 + 2927*x - 1358*x^2 + 288*x^3 - 28*x^4 + x^5, the coefficient of the linear term equals 2927; hence a(1) = 2927.
MAPLE
A127489 := proc(n)
local x, j ;
mul( x-ithprime(n+j), j=0..4) ;
expand(%) ;
coeff(%, x, 1) ;
end proc:
seq(A127489(n), n=1..60) ; # R. J. Mathar, Apr 23 2023
MATHEMATICA
Table[CoefficientList[Expand[(x-Prime[n])*(x-Prime[n+1])*(x-Prime[n+2])* (x-Prime[n+3])*(x-Prime[n+4])], x][[2]], {n, 1, 24}]
CROSSREFS
Cf. A127490.
Sequence in context: A180651 A180331 A043444 * A054831 A127490 A237079
KEYWORD
nonn,less
AUTHOR
Artur Jasinski, Jan 16 2007
EXTENSIONS
Edited by Stefan Steinerberger, Jul 18 2007
STATUS
approved