|
|
A127489
|
|
a(n) is the coefficient of the linear term in the polynomial (x-prime(n))*(x-prime(n+1))*(x-prime(n+2))*(x-prime(n+3))*(x-prime(n+4)).
|
|
7
|
|
|
2927, 12673, 48457, 136489, 342889, 745945, 1480489, 2760049, 5070049, 8292889, 12185065, 18656761, 27138729, 37294369, 53106049, 73698049, 95048089, 120087129, 153503149, 192747937, 247731385, 321039529, 396584569, 485290729
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Arithmetic derivative (see A003415) of prime(n)*prime(n+1)*prime(n+2)*prime(n+3)*prime(n+4). [Giorgio Balzarotti, May 26 2011]
|
|
LINKS
|
|
|
EXAMPLE
|
a(1) is the coefficient of the linear term of (x-2)*(x-3)*(x-5)*(x-7)*(x-11).
This polynomial is -2310 + 2927*x - 1358*x^2 + 288*x^3 - 28*x^4 + x^5, the coefficient of the linear term equals 2927; hence a(1) = 2927.
|
|
MAPLE
|
local x, j ;
mul( x-ithprime(n+j), j=0..4) ;
expand(%) ;
coeff(%, x, 1) ;
end proc:
|
|
MATHEMATICA
|
Table[CoefficientList[Expand[(x-Prime[n])*(x-Prime[n+1])*(x-Prime[n+2])* (x-Prime[n+3])*(x-Prime[n+4])], x][[2]], {n, 1, 24}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,less
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|