|
|
A126908
|
|
Numbers k such that 1 + k^2 + k^4 + k^6 + k^7 is prime.
|
|
11
|
|
|
1, 4, 13, 15, 24, 30, 37, 40, 55, 93, 138, 139, 148, 153, 154, 159, 160, 165, 184, 195, 204, 223, 258, 303, 355, 360, 373, 459, 472, 475, 510, 519, 534, 577, 594, 607, 615, 627, 658, 672, 688, 723, 735, 739, 795, 805, 807, 817, 819, 820, 847, 874, 879, 904
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^7], AppendTo[a, n]], {n, 1, 1400}]; a
Select[Range[1000], PrimeQ[1+#^2+#^4+#^6+#^7]&] (* Harvey P. Dale, Jan 15 2016 *)
|
|
PROG
|
(PARI) is(n)=isprime(1+n^2+n^4+n^6+n^7) \\ Charles R Greathouse IV, Feb 17 2017
|
|
CROSSREFS
|
Cf. A049407, A124175 A124176 A124177, A124178, A124179, A124180, A124181, A126908-A126916.
Sequence in context: A066774 A075339 A089733 * A106681 A144947 A022416
Adjacent sequences: A126905 A126906 A126907 * A126909 A126910 A126911
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Artur Jasinski, Dec 31 2006
|
|
STATUS
|
approved
|
|
|
|