OFFSET
1,2
COMMENTS
T(n,k) is the total area between the lines y=k-1 and y=k in all Dyck paths of semilength n (1 <= k <= n).
With row and column indices starting at 0, this triangle is the Riordan array ( c(x)^4/(2 - c(x)), x*c^2(x) ), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Mar 12 2022
Equals A111418 when k starts at 0. - Georg Fischer, Jul 26 2023
LINKS
G. C. Greubel, Rows n = 1..100 of triangle, flattened
FORMULA
EXAMPLE
Triangle begins:
1;
5, 1;
21, 7, 1;
84, 36, 9, 1;
330, 165, 55, 11, 1;
1287, 715, 286, 78, 13, 1;
5005, 3003, 1365, 455, 105, 15, 1;
..
MAPLE
T:=(n, k)->binomial(2*n+1, n-k): for n from 1 to 11 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
t[n_, k_] := Binomial[2n + 1, n - k]; Table[ t[n, k], {n, 10}, {k, n}] // Flatten
PROG
(PARI) for(n=1, 15, for(k=1, n, print1(binomial(2*n+1, n-k), ", "))) \\ G. C. Greubel, Oct 23 2018
(Magma) [[Binomial(2*n+1, n-k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Oct 23 2018
(GAP) T:=Flat(List([1..10], n->List([1..n], k->Binomial(2*n+1, n-k)))); # Muniru A Asiru, Oct 24 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Mar 11 2007
STATUS
approved