OFFSET
0,2
COMMENTS
A hex tree is a rooted tree where each vertex has 0, 1, or 2 children and, when only one child is present, it is either a left child, or a middle child, or a right child (name due to an obvious bijection with certain tree-like polyhexes; see the Harary-Read reference).
LINKS
F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
FORMULA
a(n) = Sum_{k=0..n} k*A126321(n,k).
G.f.: (1-3z)^2*[2-9z+5z^2-(2-3z)sqrt(1-6z+5z^2)]/[2z^2*sqrt(1-6z+5z^2)].
Conjecture: -(n+2)*(1176*n^2+350135*n-2095015)*a(n) +3*(-392*n^3+1110577*n^2-6230546*n-1231580)*a(n-1) +(43512*n^3-9103273*n^2+68264245*n-103131090) *a(n-2) -15*(n-4)*(2744*n^2-398547*n+1917624)*a(n-3)=0. - R. J. Mathar, Jun 17 2016
MAPLE
g:=(1-3*z)^2*(2-9*z+5*z^2-(2-3*z)*sqrt(1-6*z+5*z^2))/2/z^2/sqrt(1-6*z+5*z^2): gser:=series(g, z=0, 33): seq(coeff(gser, z, n), n=0..27);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 25 2006
STATUS
approved