OFFSET
1,1
LINKS
Robert Israel, Table of n, a(n) for n = 1..500
W. Keller and J. Richstein, Fermat quotients that are divisible by p.
MAPLE
f:= proc(n) local p, k, j, q, R;
p:= ithprime(n);
R:= sort(map(rhs@op, [msolve(q^(p-1)-1, p^5)]));
for k from 0 do
for j in R do
q:= k*p^5+j;
if isprime(q) then return q fi;
od
od
end proc:
map(f, [$1..100]); # Robert Israel, Apr 11 2019
MATHEMATICA
Do[p = Prime[n]; q = 2; While[PowerMod[q, p-1, p^5] != 1, q = NextPrime[q]]; Print[q], {n, 100}] (* Ryan Propper, Mar 31 2007 *)
PROG
(PARI) { a(n) = local(p, x, y); if(n==1, return(97)); p=prime(n); x=znprimroot(p^5)^(p^4); vecsort( vector(p-1, i, y=lift(x^i); while(!isprime(y), y+=p^5); y ) )[1] } \\ Max Alekseyev, May 30 2007
(Python)
from itertools import count
from sympy import nthroot_mod, isprime, prime
def A125646(n):
m = (p:=prime(n))**5
r = sorted(nthroot_mod(1, p-1, m, all_roots=True))
for i in count(0, m):
for a in r:
if isprime(i+a): return i+a # Chai Wah Wu, May 02 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Nov 29 2006
EXTENSIONS
More terms from Ryan Propper, Mar 31 2007
More terms from Max Alekseyev, May 30 2007
STATUS
approved