The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125250 Square array, read by antidiagonals, where A(1,1) = A(2,2) = 1, A(1,2) = A(2,1) = 0, A(n,k) = 0 if n < 1 or k < 1, otherwise A(n,k) = A(n-2,k-2) + A(n-1,k-2) + A(n-2,k-1) + A(n-1,k-1). 0
 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 5, 1, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 3, 11, 3, 0, 0, 0, 0, 0, 0, 1, 13, 13, 1, 0, 0, 0, 0, 0, 0, 0, 9, 26, 9, 0, 0, 0, 0, 0, 0, 0, 0, 4, 32, 32, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 26, 63, 26, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 80, 80, 14, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,13 COMMENTS It appears that the main diagonal (1,1,2,5,11,...) is A051286 (Whitney number of level n of the lattice of the ideals of the fence of size 2 n) that the diagonals (0,1,2,5,13,...) adjacent to the main diagonal are A110320 (Number of blocks in all RNA secondary structures with n nodes) and that the n-th antidiagonal sum = A094686(n-1) (a Fibonacci convolution). The n-th row sum = A002605(n). LINKS FORMULA A(1,1) = A(2,2) = 1, A(1,2) = A(2,1) = 0, A(n,k) = 0 if n < 1 or k < 1, otherwise A(n,k) = A(n-2,k-2) + A(n-1,k-2) + A(n-2,k-1) + A(n-1,k-1). From Peter Bala, Nov 07 2017: (Start) T(n,k) = Sum_{i = floor((n+1)/2)..k} binomial(i,n-i)* binomial(i,k-i). Square array = A026729 * transpose(A026729), where A026729 is viewed as a lower unit triangular array. Omitting the first row and column of square array = A030528 * transpose(A030528). O.g.f. 1/(1 - t*(1 + t)*x - t*(1 + t)*x^2) = 1 + (t + t^2)*x + (t + 2*t^2 + 2*t^3 + t^4)*x^2 + .... Cf. A109466 with o.g.f. 1/(1 - t*x - t*x^2). The n-th row polynomial R(n,t) satisfies R(n,t) = R(n,-1 - t). R(n,t) = (-1)^n*sqrt(-t*(1 + t))^n*U(n, 1/2*sqrt(-t*(1 + t))), where U(n,x) denotes the n-th Chebyshev polynomial of the second kind. The sequence of row polynomials R(n,t) is a divisibility sequence of polynomials, that is, if m divides n then R(m,t) divides R(n,t) in the polynomial ring Z[t]. R(n,1) = A002605; R(n,2) = A057089. (End) EXAMPLE Array starts as: 1 0 0 0  0  0  0 ... 0 1 1 0  0  0  0 ... 0 1 2 2  1  0  0 ... 0 0 2 5  5  3  1   0 ... 0 0 1 5 11 13  9   4   1   0... 0 0 0 3 13 26 32  26  14   5   1  0 ... 0 0 0 1  9 32 63  80  71  45  20  6  1 0 ... 0 0 0 0  4 26 80 153 201 191 135 71 27 7 1 0 ... ... MATHEMATICA T[n_, k_] := Sum[Binomial[i, n-i] Binomial[i, k-i], {i, Floor[(n+1)/2], k}]; Table[T[n-k, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 12 2019 *) PROG (PARI) A=matrix(22, 22); A[1, 1]=1; A[2, 2]=1; A[2, 1]=0; A[1, 2]=0; A[3, 2]=1; A[2, 3]=1; for(n=3, 22, for(k=3, 22, A[n, k]=A[n-2, k-2]+A[n-1, k-2]+A[n-2, k-1]+A[n-1, k-1])); for(n=1, 22, for(i=1, n, print1(A[n-i+1, i], ", "))) CROSSREFS Cf. A051286, A110320, A002605, A026729, A030528, A057089, A109466. Sequence in context: A178176 A093569 A073091 * A048113 A028961 A110177 Adjacent sequences:  A125247 A125248 A125249 * A125251 A125252 A125253 KEYWORD nonn,tabl,easy AUTHOR Gerald McGarvey, Jan 15 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 20:26 EDT 2021. Contains 346273 sequences. (Running on oeis4.)