login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125250
Square array, read by antidiagonals, where A(1,1) = A(2,2) = 1, A(1,2) = A(2,1) = 0, A(n,k) = 0 if n < 1 or k < 1, otherwise A(n,k) = A(n-2,k-2) + A(n-1,k-2) + A(n-2,k-1) + A(n-1,k-1).
1
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 5, 1, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 3, 11, 3, 0, 0, 0, 0, 0, 0, 1, 13, 13, 1, 0, 0, 0, 0, 0, 0, 0, 9, 26, 9, 0, 0, 0, 0, 0, 0, 0, 0, 4, 32, 32, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 26, 63, 26, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 80, 80, 14, 0, 0, 0, 0, 0
OFFSET
1,13
COMMENTS
It appears that the main diagonal (1,1,2,5,11,...) is A051286 (Whitney number of level n of the lattice of the ideals of the fence of size 2 n) that the diagonals (0,1,2,5,13,...) adjacent to the main diagonal are A110320 (Number of blocks in all RNA secondary structures with n nodes) and that the n-th antidiagonal sum = A094686(n-1) (a Fibonacci convolution). The n-th row sum = A002605(n).
FORMULA
A(1,1) = A(2,2) = 1, A(1,2) = A(2,1) = 0, A(n,k) = 0 if n < 1 or k < 1, otherwise A(n,k) = A(n-2,k-2) + A(n-1,k-2) + A(n-2,k-1) + A(n-1,k-1).
From Peter Bala, Nov 07 2017: (Start)
T(n,k) = Sum_{i = floor((n+1)/2)..k} binomial(i,n-i)* binomial(i,k-i).
Square array = A026729 * transpose(A026729), where A026729 is viewed as a lower unit triangular array. Omitting the first row and column of square array = A030528 * transpose(A030528).
O.g.f. 1/(1 - t*(1 + t)*x - t*(1 + t)*x^2) = 1 + (t + t^2)*x + (t + 2*t^2 + 2*t^3 + t^4)*x^2 + .... Cf. A109466 with o.g.f. 1/(1 - t*x - t*x^2).
The n-th row polynomial R(n,t) satisfies R(n,t) = R(n,-1 - t).
R(n,t) = (-1)^n*sqrt(-t*(1 + t))^n*U(n, 1/2*sqrt(-t*(1 + t))), where U(n,x) denotes the n-th Chebyshev polynomial of the second kind.
The sequence of row polynomials R(n,t) is a divisibility sequence of polynomials, that is, if m divides n then R(m,t) divides R(n,t) in the polynomial ring Z[t].
R(n,1) = A002605; R(n,2) = A057089. (End)
EXAMPLE
Array starts as:
1 0 0 0 0 0 0 ...
0 1 1 0 0 0 0 ...
0 1 2 2 1 0 0 ...
0 0 2 5 5 3 1 0 ...
0 0 1 5 11 13 9 4 1 0...
0 0 0 3 13 26 32 26 14 5 1 0 ...
0 0 0 1 9 32 63 80 71 45 20 6 1 0 ...
0 0 0 0 4 26 80 153 201 191 135 71 27 7 1 0 ...
...
MATHEMATICA
T[n_, k_] := Sum[Binomial[i, n-i] Binomial[i, k-i], {i, Floor[(n+1)/2], k}];
Table[T[n-k, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 12 2019 *)
PROG
(PARI) A=matrix(22, 22); A[1, 1]=1; A[2, 2]=1; A[2, 1]=0; A[1, 2]=0; A[3, 2]=1; A[2, 3]=1; for(n=3, 22, for(k=3, 22, A[n, k]=A[n-2, k-2]+A[n-1, k-2]+A[n-2, k-1]+A[n-1, k-1])); for(n=1, 22, for(i=1, n, print1(A[n-i+1, i], ", ")))
KEYWORD
nonn,tabl,easy
AUTHOR
Gerald McGarvey, Jan 15 2007
STATUS
approved