The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125194 Numerator of generalized harmonic number H((p-1)/2,2p)= Sum[ 1/k^(2p), {k,1,(p-1)/2}] divided by p^2 for prime p>3. 0
 41, 1599366601, 10877829357646990581304675244472669289, 100935935338172297894217692920950359818733561, 9217176064595104612826996436899733706027947436610177335077693637792069056822883934927465549747441 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS Generalized harmonic number is H(n,m)= Sum[ 1/k^m, {k,1,n} ]. The numerator of generalized harmonic number H(p-1,2p) is divisible by p^2 for prime p>3 (see A120290(n)). The numerator of generalized harmonic number H((p-1)/2,2p) is divisible by p^2 for prime p>3. LINKS Table of n, a(n) for n=3..7. Eric Weisstein's World of Mathematics, Harmonic Number Eric Weisstein's World of Mathematics, Wolstenholme's Theorem FORMULA a(n) = Numerator[ Sum[ 1/k^(2*Prime[n]), {k,1,(Prime[n]-1)/2} ]] / Prime[n]^2 for n>2. EXAMPLE Prime[3] = 5. a(3) = Numerator[ 1 + 1/2^10 ] / 5^2 = 1025 / 25 = 41. MATHEMATICA Do[p=Prime[k]; f=0; Do[f=f+1/n^(2p); g=Numerator[f]; If[IntegerQ[g/(p)^2], Print[{p, g/p^2}]], {n, 1, (p-1)/2}], {k, 1, 100}] CROSSREFS Cf. A120290, A119722, A001008, A007406, A007408, A007410. Sequence in context: A297055 A228555 A297058 * A237639 A095189 A023932 Adjacent sequences: A125191 A125192 A125193 * A125195 A125196 A125197 KEYWORD frac,nonn AUTHOR Alexander Adamchuk, Jan 13 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 13:53 EDT 2024. Contains 375042 sequences. (Running on oeis4.)