The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124984 Primes of the form 8*k + 3 generated recursively. Initial prime is 3. General term is a(n) = Min_{p is prime; p divides 2 + Q^2; p == 3 (mod 8)}, where Q is the product of previous terms in the sequence. 19
 3, 11, 1091, 1296216011, 2177870960662059587828905091, 76870667, 19, 257680660619, 73677606898727076965233531, 23842300525435506904690028531941969449780447746432390747, 35164737203 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 2+Q^2 always has a prime divisor congruent to 3 modulo 8. REFERENCES D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 191. LINKS Robert Price, Table of n, a(n) for n = 1..15 N. Hobson, Home page (listed in lieu of email address) EXAMPLE a(3) = 1091 is the smallest prime divisor congruent to 3 mod 8 of 2+Q^2 = 1091, where Q = 3 * 11. MATHEMATICA a = {3}; q = 1; For[n = 2, n ≤ 5, n++, q = q*Last[a]; AppendTo[a, Min[Select[FactorInteger[2 + q^2][[All, 1]], Mod[#, 8] \[Equal] 3 &]]]; ]; a (* Robert Price, Jul 14 2015 *) PROG (PARI) lista(nn) = my(f, q=3); print1(q); for(n=2, nn, f=factor(2+q^2)[, 1]~; for(i=1, #f, if(f[i]%8==3, print1(", ", f[i]); q*=f[i]; break))); \\ Jinyuan Wang, Aug 05 2022 CROSSREFS Cf. A000945, A007520, A057204-A057208, A051308-A051335, A124984-A124993, A125037-A125045. Sequence in context: A088579 A344946 A006938 * A287432 A353085 A034797 Adjacent sequences: A124981 A124982 A124983 * A124985 A124986 A124987 KEYWORD nonn AUTHOR Nick Hobson, Nov 18 2006 EXTENSIONS a(10) from Robert Price, Jul 04 2015 a(11) from Robert Price, Jul 05 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 17:53 EDT 2023. Contains 361432 sequences. (Running on oeis4.)