login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123691
a(n) = number of standard Young tableaux of type (n,n-1,n-1).
1
1, 3, 21, 210, 2574, 36036, 554268, 9145422, 159352050, 2900207310, 54698315490, 1062710129520, 21172455657360, 431010704453400, 8939669081780520, 188478023140872630, 4031562420682009290, 87350519114776867950, 1914486941500560677250, 42397183540866961907100
OFFSET
1,2
LINKS
Wolfgang Unger, Combinatorics of Lattice QCD at Strong Coupling, arXiv:1411.4493 [hep-lat], 2014.
FORMULA
a(n) = 6*(3*n-2)! / (n!*(n-1)!*(n+2)!). - Alois P. Heinz, Apr 11 2012
n*(n+2)*a(n) - 3*(3*n-2)*(3*n-4)*a(n-1) = 0. - R. J. Mathar, Aug 10 2015
G.f.: x*3F2(1,2/3,4/3;2,4;27x). - R. J. Mathar, Aug 10 2015
MAPLE
a:= n-> 6 *(3*n-2)! / (n! *(n-1)! *(n+2)!):
seq(a(n), n=1..25); # Alois P. Heinz, Apr 11 2012
MATHEMATICA
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) Table[ NumberOfTableaux@{n, n - 1, n - 1}, {n, 18}]
CROSSREFS
Cf. A005789, A123555, subdiagonal of A065077.
Sequence in context: A114469 A097690 A037967 * A087918 A088926 A291743
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Nov 15 2006
STATUS
approved