login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123689
Number of points in a square lattice covered by a circle of diameter n if the center of the circle is chosen such that the circle covers the minimum possible number of lattice points.
6
0, 2, 4, 10, 16, 26, 32, 46, 60, 74, 88, 108, 124, 146, 172, 194, 216, 248, 276, 308
OFFSET
1,2
COMMENTS
a(n)<=min(A053411(n),A053414(n),A053415(n)).
Using brute force computation and a step size of 1/1000 (though 1/200 suffices), the [conjectured] terms a(21) to a(40) would be: 332, 374, 408, 438, 484, 522, 560, 608, 648, 698, 740, 794, 846, 894, 952, 1006, 1060, 1124, 1184, 1248. - Jean-François Alcover, Jan 08 2018
EXAMPLE
a(1)=0: Circle with diameter 1 with center (0.5,0.5) covers no lattice points; a(2)=2: Circle with diameter 2 with center (0,eps) covers 2 lattice points;
a(3)=4: Circle with diameter 3 with center (0.5,0.5) covers 4 lattice points.
MATHEMATICA
dx = 1/200; y0 = 0; (* To speed up computation, the step size dx is experimentally adjusted and the circle center is taken on the x-axis. *)
cnt[pts_, ctr_, r_] := Count[pts, pt_ /; Norm[pt - ctr] <= r];
a[n_] := Module[{r, pts, innerCnt, an, center}, r = n/2; pts = Select[ Flatten[ Table[{x, y}, {x, -r - 1, r + 1}, {y, -r - 1, r + 1}], 1], r - 1 <= Norm[#] <= r + 1 &]; innerCnt = Sum[If[Norm[{x, y}] < r - 1, 1, 0], {x, -r - 1, r + 1}, {y, -r - 1, r + 1}]; {an, center} = Table[{innerCnt + cnt[pts, {x, y0}, r], {x, y0}}, {x, -1/2, 1/2, dx}] // Sort // First; Print["a(", n, ") = ", an, ", center = ", center // InputForm]; an];
Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Jan 08 2018 *)
CROSSREFS
The corresponding sequences for the hexagonal lattice and the honeycomb net are A125851 and A127405, respectively.
Sequence in context: A218665 A189558 A111149 * A137928 A293154 A144834
KEYWORD
more,nonn
AUTHOR
Hugo Pfoertner, Oct 09 2006
STATUS
approved