login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123397
Values X satisfying the equation 9(X-Y)^4-2XY=0, where X>=Y.
1
0, 36, 39304, 45280620, 52251208976, 60297761989044, 69583562098521240, 80299370262508107516, 92665403695926847089184, 106935795565612276500481860, 123403815417308895154020255656
OFFSET
0,2
COMMENTS
To find Y values: b(n) = c(n)*(-1+d(n)) which gives: 0, 32, 39168, 45276000, 52251052032, ...
LINKS
FORMULA
a(n) = c(n)*(1+d(n)) with c(0) = 0, c(1) = 2 and c(n) = 34*c(n-1) - c(n-2), d(0) = 1, d(1) = 17 and d(n) = 34*d(n-1) - d(n-2).
From Max Alekseyev, Nov 13 2009: (Start)
For n>=4, a(n) = 1188*a(n-1) - 39238*a(n-2) + 1188*a(n-3) - a(n-4).
O.g.f.: 4*x*(9*x^2 -866*x +9)/((x^2 -34*x +1)*(x^2 -1154*x +1)). (End)
MATHEMATICA
CoefficientList[Series[4*x*(9*x^2 - 866*x + 9)/(x^2 - 34*x + 1)/(x^2 - 1154*x + 1), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *)
PROG
(PARI) my(x='x+O('x^50)); concat([0], Vec(4*x*(9*x^2 -866*x +9)/((x^2 -34*x +1)*(x^2 -1154*x +1)))) \\ G. C. Greubel, Oct 13 2017
CROSSREFS
Sequence in context: A159431 A028454 A159435 * A185097 A023111 A295927
KEYWORD
nonn
AUTHOR
Mohamed Bouhamida, Oct 14 2006
EXTENSIONS
More terms from Max Alekseyev, Nov 13 2009
STATUS
approved