The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123397 Values X satisfying the equation 9(X-Y)^4-2XY=0, where X>=Y. 1
 0, 36, 39304, 45280620, 52251208976, 60297761989044, 69583562098521240, 80299370262508107516, 92665403695926847089184, 106935795565612276500481860, 123403815417308895154020255656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS To find Y values: b(n) = c(n)*(-1+d(n)) which gives: 0, 32, 39168, 45276000, 52251052032, ... LINKS G. C. Greubel, Table of n, a(n) for n = 0..325 FORMULA a(n) = c(n)*(1+d(n)) with c(0) = 0, c(1) = 2 and c(n) = 34*c(n-1) - c(n-2), d(0) = 1, d(1) = 17 and d(n) = 34*d(n-1) - d(n-2). From Max Alekseyev, Nov 13 2009: (Start) For n>=4, a(n) = 1188*a(n-1) - 39238*a(n-2) + 1188*a(n-3) - a(n-4). O.g.f.: 4*x*(9*x^2 -866*x +9)/((x^2 -34*x +1)*(x^2 -1154*x +1)). (End) MATHEMATICA CoefficientList[Series[4*x*(9*x^2 - 866*x + 9)/(x^2 - 34*x + 1)/(x^2 - 1154*x + 1), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *) PROG (PARI) x='x+O('x^50); concat([0], Vec(4*x*(9*x^2 -866*x +9)/((x^2 -34*x +1)*(x^2 -1154*x +1)))) \\ G. C. Greubel, Oct 13 2017 *) CROSSREFS Sequence in context: A159431 A028454 A159435 * A185097 A023111 A295927 Adjacent sequences:  A123394 A123395 A123396 * A123398 A123399 A123400 KEYWORD nonn AUTHOR Mohamed Bouhamida, Oct 14 2006 EXTENSIONS More terms from Max Alekseyev, Nov 13 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 13:17 EDT 2022. Contains 354092 sequences. (Running on oeis4.)