The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123394 Values X satisfying the equation 7(X-Y)^4-8XY=0, where X>=Y. 1
 0, 64, 54000, 48387776, 43449047520, 39017102749504, 35037312017058000, 31463467090220398016, 28254158407188855215040, 25372202786113074403284544, 22784209847768873321556750000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS To find Y values: b(n) = c(n)*(-1+d(n)) which gives: 0, 56, 53760, 48380584, 43448832000,... LINKS G. C. Greubel, Table of n, a(n) for n = 0..335 FORMULA a(n) = c(n)*(1+d(n)) with c(0) = 0, c(1) = 4 and c(n) = 30*c(n-1) - c(n-2), d(0) = 1, d(1) = 15 and d(n) = 30*d(n-1) - d(n-2). From Max Alekseyev, Nov 13 2009: (Start) a(n) = 2*A123393(n) For n>=4, a(n) = 928*a(n-1) - 26942*a(n-2) + 928*a(n-3) - a(n-4). O.g.f.: 16*x*(4*x^2 -337*x +4)/((x^2 -30*x +1)*(x^2 -898*x +1)). (End) MATHEMATICA CoefficientList[Series[16*x*(4*x^2 - 337*x + 4)/(x^2 - 30*x + 1)/(x^2 - 898*x + 1), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *) PROG (PARI) x='x+O('x^50); concat([0], Vec(16*x*(4*x^2 -337*x +4)/((x^2 -30*x +1)*(x^2 -898*x +1)))) \\ G. C. Greubel, Oct 13 2017 CROSSREFS Sequence in context: A249076 A334605 A103346 * A069445 A227604 A159677 Adjacent sequences:  A123391 A123392 A123393 * A123395 A123396 A123397 KEYWORD nonn AUTHOR Mohamed Bouhamida, Oct 14 2006 EXTENSIONS More terms from Max Alekseyev, Nov 13 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 14:34 EST 2022. Contains 350466 sequences. (Running on oeis4.)