login
A123395
Values X satisfying the equation 7(X-Y)^4-16XY=0, where X>=Y.
1
0, 27, 6144, 1549125, 393289536, 99891091323, 25371897661440, 6444361377895077, 1636842406341623424, 415751526662194438875, 105599250926807591663616, 26821793983834918021139973
OFFSET
0,2
COMMENTS
To find Y values: b(n) = c(n)*(-1+d(n)) which gives: 0, 21, 6048, 1547595, 393265152, 99890702709, ...
LINKS
FORMULA
a(n) = c(n)*(1+d(n)) with c(0) = 0, c(1) = 3 and c(n) = 16*c(n-1) - c(n-2), d(0) = 1, d(1) = 8 and d(n) = 16*d(n-1) - d(n-2).
From Max Alekseyev, Nov 13 2009: (Start)
For n>=4, a(n) = 270*a(n-1) - 4066*a(n-2) + 270*a(n-3) - a(n-4).
O.g.f.: 3*x*(9*x^2 -382*x +9)/((x^2 -16*x +1)*(x^2 -254*x +1)). (End)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(3*x*(9*x^2 -382*x +9)/((x^2 -16*x +1)*(x^2 -254*x +1)))) \\ G. C. Greubel, Oct 13 2017
CROSSREFS
Sequence in context: A046367 A059795 A211928 * A051680 A013828 A343922
KEYWORD
nonn
AUTHOR
Mohamed Bouhamida, Oct 14 2006
EXTENSIONS
More terms from Max Alekseyev, Nov 13 2009
STATUS
approved