%I #17 Sep 16 2024 23:59:16
%S 0,36,39304,45280620,52251208976,60297761989044,69583562098521240,
%T 80299370262508107516,92665403695926847089184,
%U 106935795565612276500481860,123403815417308895154020255656
%N Values X satisfying the equation 9(X-Y)^4-2XY=0, where X>=Y.
%C To find Y values: b(n) = c(n)*(-1+d(n)) which gives: 0, 32, 39168, 45276000, 52251052032, ...
%H G. C. Greubel, <a href="/A123397/b123397.txt">Table of n, a(n) for n = 0..325</a>
%F a(n) = c(n)*(1+d(n)) with c(0) = 0, c(1) = 2 and c(n) = 34*c(n-1) - c(n-2), d(0) = 1, d(1) = 17 and d(n) = 34*d(n-1) - d(n-2).
%F From _Max Alekseyev_, Nov 13 2009: (Start)
%F For n>=4, a(n) = 1188*a(n-1) - 39238*a(n-2) + 1188*a(n-3) - a(n-4).
%F O.g.f.: 4*x*(9*x^2 -866*x +9)/((x^2 -34*x +1)*(x^2 -1154*x +1)). (End)
%t CoefficientList[Series[4*x*(9*x^2 - 866*x + 9)/(x^2 - 34*x + 1)/(x^2 - 1154*x + 1), {x, 0, 50}], x] (* _G. C. Greubel_, Oct 13 2017 *)
%o (PARI) my(x='x+O('x^50)); concat([0], Vec(4*x*(9*x^2 -866*x +9)/((x^2 -34*x +1)*(x^2 -1154*x +1)))) \\ _G. C. Greubel_, Oct 13 2017
%K nonn
%O 0,2
%A _Mohamed Bouhamida_, Oct 14 2006
%E More terms from _Max Alekseyev_, Nov 13 2009