login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A123164
Row sums of A123160.
11
1, 2, 8, 38, 192, 1002, 5336, 28814, 157184, 864146, 4780008, 26572086, 148321344, 830764794, 4666890936, 26283115038, 148348809216, 838944980514, 4752575891144, 26964373486406, 153196621856192, 871460014012682, 4962895187697048, 28292329581548718, 161439727075246592
OFFSET
0,2
COMMENTS
Coefficient of x^n in ((1 + x)/(1 - x))^n. - Paul Barry, Jan 20 2008
a(n) is also the number of order-preserving partial transformations (of an n-element chain). Equivalently, it is the order of the semigroup (monoid) of order-preserving partial transformations (of an n-element chain), PO sub n. - Abdullahi Umar, Aug 25 2008
Hankel transform is A180966. - Paul Barry, Sep 29 2010
LINKS
A. Laradji and A. Umar, A. Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra 278, (2004), 342-359.
A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq. 7 (2004), 04.3.8
A. Laradji and A. Umar, Asymptotic results for semigroups of order-preserving partial transformations Comm. Algebra 34 (2006), 1071-1075. [From Abdullahi Umar, Oct 11 2008]
Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 4.
FORMULA
a(n) = A122542(2*n,n). - Philippe Deléham, May 28 2007
a(n) = Sum_{k=0..n} C(n, k)*C(n+k-1, k). - Paul Barry, Aug 22 2007
(2*n-1)*(n+1)*a(n+1) = 4*(3*n^2-1)*a(n) - (2*n+1)*(n-1)*a(n-1) for n >= 1 with a(0) = 1 and a(1) = 2. - Abdullahi Umar, Aug 25 2008
a(n) = Jacobi_P(n, 0, -1, 3). - Paul Barry, Sep 27 2009
G.f.: (1 + x + sqrt(1 - 6*x + x^2))/(2*sqrt(1 - 6*x + x^2)). - Paul Barry, Sep 29 2010
From Abdullahi Umar, Oct 11 2008: (Start)
a(n+1) - a(n) = (2*n + 1)*A006318 (n >= 0);
2*a(n) = (n + 1)*A006318(n) - (n - 1)*A006318(n-1) (n > 0). (End)
a(n) = Hypergeometric2F1([-n, n], [1], -1). - Peter Luschny, Aug 02 2014
a(n) ~ (1 + sqrt(2))^(2*n) / (2^(3/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Feb 14 2021
From Peter Bala, Oct 07 2021: (Start)
a(n) = Sum_{k = 0..floor(n/2)} (-1)^k*C(n, k)*C(3*n-2*k-1, n-2*k).
a(p) == 2 (mod p^3) for prime p >= 5.
Conjecture: a(n*p^k) == a(n*p^(k-1)) mod( p^(3*k) ) for prime p >= 5 and all positive integers n and k. (End)
MATHEMATICA
a[n_]:= a[n]= Sum[Binomial[n+k-1, k]*Binomial[n, k], {k, 0, n}];
Table[a[n], {n, 0, 30}]
PROG
(Magma) [1] cat [n le 2 select 2*4^(n-1) else (4*(3*(n-1)^2-1)*Self(n-1) - (2*n-1)*(n-2)*Self(n-2))/((2*n-3)*(n)): n in [1..30]]; // G. C. Greubel, Jul 19 2023
(SageMath)
def A123164(n): return sum(binomial(n, j)*binomial(n+j-1, j) for j in range(n+1))
[A123164(n) for n in range(31)] # G. C. Greubel, Jul 19 2023
CROSSREFS
Essentially identical to A002003.
Sequence in context: A220542 A199213 A002003 * A264229 A059423 A112109
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Oct 02 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 04 2006
Offset changed (a(0)=1) by Michael Somos, Feb 07 2011
STATUS
approved