login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123163
Triangle T(n, k) = binomial((n-k)^2, k^2) read by rows.
2
1, 1, 0, 1, 1, 0, 1, 4, 0, 0, 1, 9, 1, 0, 0, 1, 16, 126, 0, 0, 0, 1, 25, 1820, 1, 0, 0, 0, 1, 36, 12650, 11440, 0, 0, 0, 0, 1, 49, 58905, 2042975, 1, 0, 0, 0, 0, 1, 64, 211876, 94143280, 2042975, 0, 0, 0, 0, 0, 1, 81, 635376, 2054455634, 7307872110, 1, 0, 0, 0, 0, 0
OFFSET
0,8
FORMULA
T(n, k) = (n^2 - 2*n*k + k^2)!/((k^2)!(n^2 - 2*n*k)!).
From G. C. Greubel, Jul 18 2023: (Start)
T(n, 0) = T(2*n, n) = 1.
T(n, n) = A000007(n).
Sum_{k=0..n} T(n, k) = A123165(n). (End)
EXAMPLE
n\k | 0 1 2 3 4 5 6 7
----+--------------------------------------------
0 | 1;
1 | 1, 0;
2 | 1, 1, 0;
3 | 1, 4, 0, 0;
4 | 1, 9, 1, 0, 0;
5 | 1, 16, 126, 0, 0, 0;
6 | 1, 25, 1820, 1, 0, 0, 0;
7 | 1, 36, 12650, 11440, 0, 0, 0, 0;
MATHEMATICA
T[n_, k_]= (n^2-2*n*k+k^2)!/((k^2)!(n^2-2*n*k)!);
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
Flatten[Table[Binomial[(n-m)^2, m^2], {n, 0, 10}, {m, 0, n}]] (* Harvey P. Dale, Aug 08 2012 *)
PROG
(Magma) [Binomial((n-k)^2, k^2): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 18 2023
(SageMath) flatten([[binomial((n-k)^2, k^2) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 18 2023
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Oct 02 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 04 2006
STATUS
approved