login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = binomial((n-k)^2, k^2) read by rows.
2

%I #23 Jul 19 2023 08:56:20

%S 1,1,0,1,1,0,1,4,0,0,1,9,1,0,0,1,16,126,0,0,0,1,25,1820,1,0,0,0,1,36,

%T 12650,11440,0,0,0,0,1,49,58905,2042975,1,0,0,0,0,1,64,211876,

%U 94143280,2042975,0,0,0,0,0,1,81,635376,2054455634,7307872110,1,0,0,0,0,0

%N Triangle T(n, k) = binomial((n-k)^2, k^2) read by rows.

%H G. C. Greubel, <a href="/A123163/b123163.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k) = (n^2 - 2*n*k + k^2)!/((k^2)!(n^2 - 2*n*k)!).

%F From _G. C. Greubel_, Jul 18 2023: (Start)

%F T(n, 0) = T(2*n, n) = 1.

%F T(n, n) = A000007(n).

%F Sum_{k=0..n} T(n, k) = A123165(n). (End)

%e n\k | 0 1 2 3 4 5 6 7

%e ----+--------------------------------------------

%e 0 | 1;

%e 1 | 1, 0;

%e 2 | 1, 1, 0;

%e 3 | 1, 4, 0, 0;

%e 4 | 1, 9, 1, 0, 0;

%e 5 | 1, 16, 126, 0, 0, 0;

%e 6 | 1, 25, 1820, 1, 0, 0, 0;

%e 7 | 1, 36, 12650, 11440, 0, 0, 0, 0;

%t T[n_, k_]= (n^2-2*n*k+k^2)!/((k^2)!(n^2-2*n*k)!);

%t Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten

%t Flatten[Table[Binomial[(n-m)^2,m^2],{n,0,10},{m,0,n}]] (* _Harvey P. Dale_, Aug 08 2012 *)

%o (Magma) [Binomial((n-k)^2, k^2): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jul 18 2023

%o (SageMath) flatten([[binomial((n-k)^2, k^2) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Jul 18 2023

%Y Cf. A000007, A011973, A123165.

%K nonn,tabl

%O 0,8

%A _Roger L. Bagula_, Oct 02 2006

%E Edited by _N. J. A. Sloane_, Oct 04 2006