login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180966
Hankel transform of A123164.
2
1, 4, 28, 384, 10496, 573440, 62652416, 13690208256, 5982889443328, 5229277301702656, 9141181343655264256, 31958984107701798174720, 223467104335874481157308416, 3125102257923487167715657908224
OFFSET
0,2
LINKS
FORMULA
a(n) = 2^C(n,2)*Sum_{k=0..floor(n/2)} C(n-k,k)*(-2)^k*4^(n-2*k).
a(n) = 2^C(n,2)*[x^n] (1/(1 - 4*x + 2*x^2)).
a(n) = 2^(2*n + ((n-1)*n)/2)*Hyper2F1([(1-n)/2, -n/2], [-n], 1/2) for n > 0. - Peter Luschny, Aug 02 2014
a(n) ~ 2^(n^2/2 - 1) * (1 + sqrt(2))^(n+1). - Vaclav Kotesovec, Feb 14 2021
a(n) = 2^(n^2/2)*ChebyshevU(n, sqrt(2)) = 2^(n*(n-1)/2)*A007070(n). - G. C. Greubel, Apr 06 2021
MATHEMATICA
a[n_] := 2^Binomial[n, 2] Sum[Binomial[n-k, k] (-2)^k 4^(n-2k), {k, 0, n/2} ]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jun 17 2019 *)
Table[2^(n^2/2)*ChebyshevU[n, Sqrt[2]], {n, 0, 20}] (* G. C. Greubel, Apr 06 2021 *)
PROG
(Magma) [ 2^Binomial(n, 2)*(&+[ (-1)^k*Binomial(n-k, k)*2^(2*n-3*k): k in [0..Floor(n/2)]]): n in [0..20]]; // G. C. Greubel, Apr 06 2021
(Sage) [2^(n^2/2)*chebyshev_U(n, sqrt(2)) for n in (0..20)] # G. C. Greubel, Apr 06 2021
CROSSREFS
Sequence in context: A095288 A155105 A132685 * A203032 A086812 A197872
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 29 2010
STATUS
approved