

A122711


Even numbers n such that n+2 divides n+2^n.


2



106976, 1642796, 21879936, 96593696, 6926872352, 21235295216, 24936246176, 25867010016, 80832867116, 82230049056, 208329074876, 360598467776, 533800559216, 587627376176, 661575990912, 662312961696, 664490433776, 737374205276, 831623487276, 1052816473676, 1137732817376, 1213045642656, 1270015920636
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Same as even numbers n such that 2^n == 2 (mod n+2).  Robert G. Wilson v, Sep 27 2006
n must be a multiple of 4. A002326(n/4) must not be divisible by 2 or 3. If p is an odd prime factor of n+2, (n+2)/p mod A002326((p1)/2)=3.  Martin Fuller, Oct 09 2006
Also, the positive numbers A015922(k)2 that are multiples of 4. E.g., a(1) = 106976 = A015922(3926)2. Hence, a(n)+2 forms a subsequence of A015922 (and of A130134) consisting of the terms congruent to 2 modulo 4.  Max Alekseyev, Apr 03 2014


LINKS

Max Alekseyev, Table of n, a(n) for n = 1..110 (all terms below 10^15)


MATHEMATICA

Do[ If[ PowerMod[2, 2n, 2n + 2] == 2, Print@2n], {n, 10^9}] (* Robert G. Wilson v, Sep 27 2006 *)


CROSSREFS

Cf. A081765, A015922, A122042.
Sequence in context: A223343 A028466 A157105 * A297994 A237216 A228268
Adjacent sequences: A122708 A122709 A122710 * A122712 A122713 A122714


KEYWORD

nonn


AUTHOR

Zak Seidov, Sep 23 2006


EXTENSIONS

More terms from Max Alekseyev, Sep 23 2006, Oct 01 2006
More terms from Martin Fuller, Oct 09 2006
Terms a(18) onward from Max Alekseyev, Apr 09 2014
bfile corrected by Max Alekseyev, Oct 11 2016


STATUS

approved



