

A122711


Even numbers n such that n+2 divides n+2^n.


2



106976, 1642796, 21879936, 96593696, 6926872352, 21235295216, 24936246176, 25867010016, 80832867116, 82230049056, 208329074876, 360598467776, 533800559216, 587627376176, 661575990912, 662312961696, 664490433776, 737374205276, 831623487276, 1052816473676, 1137732817376, 1213045642656, 1270015920636
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

n must be a multiple of 4. A002326(n/4) must not be divisible by 2 or 3. If p is an odd prime factor of n+2, (n+2)/p mod A002326((p1)/2)=3.  Martin Fuller, Oct 09 2006
Also, the positive numbers A015922(k)2 that are multiples of 4. E.g., a(1) = 106976 = A015922(3926)2. Hence, a(n)+2 forms a subsequence of A015922 (and of A130134) consisting of the terms congruent to 2 modulo 4.  Max Alekseyev, Apr 03 2014


LINKS



MATHEMATICA

Do[ If[ PowerMod[2, 2n, 2n + 2] == 2, Print@2n], {n, 10^9}] (* Robert G. Wilson v, Sep 27 2006 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



