|
|
A122670
|
|
If n mod 4 = 2 or n mod 4 = 3 then a(n) = 0 else let m=floor(n/4), then a(n) = (2*m)!/m!.
|
|
3
|
|
|
1, 1, 0, 0, 2, 2, 0, 0, 12, 12, 0, 0, 120, 120, 0, 0, 1680, 1680, 0, 0, 30240, 30240, 0, 0, 665280, 665280, 0, 0, 17297280, 17297280, 0, 0, 518918400, 518918400, 0, 0, 17643225600, 17643225600, 0, 0, 670442572800, 670442572800, 0, 0, 28158588057600, 28158588057600, 0, 0, 1295295050649600
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Number of solutions to the rook problem on an n X n board having a certain symmetry group (see Robinson for details).
A037224 is an essentially identical sequence.
|
|
REFERENCES
|
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
|
|
LINKS
|
|
|
FORMULA
|
For asymptotics see the Robinson paper.
a(n) = (1/2 + (-1)^(n/2 - 1/4 + (-1)^n/4)/2) * ((n/2 - 3/4 + (-1)^n/4 + (-1)^(n/2 - 1/4 + (-1)^n/4)/2)! / ((n/4 - 3/8 + (-1)^n/8 + (-1)^(n/2 - 1/4 + (-1)^n/4)/4)!)). - Wesley Ivan Hurt, Mar 30 2015
|
|
MAPLE
|
R:=proc(n) local m; if n mod 4 = 2 or n mod 4 = 3 then RETURN(0); fi; m:=floor(n/4); (2*m)!/m!; end;
|
|
MATHEMATICA
|
Table[If[MemberQ[{2, 3}, Mod[n, 4]], 0, ((2Floor[n/4])!/Floor[n/4]!)], {n, 0, 50}] (* Harvey P. Dale, Dec 30 2023 *)
|
|
CROSSREFS
|
If the duplicates and zeros are omitted we get A001813.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|