login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122498
Padovan numbers that are semiprimes.
4
4, 9, 21, 49, 65, 86, 265, 1081, 1897, 2513, 7739, 97229, 128801, 299426, 922111, 1221537, 2839729, 62608681, 338356945, 53406819691, 2066337330754, 6363483400447, 8429820731201, 432062194544201, 7190854504969591, 12619069972000553, 16716708595637087
OFFSET
1,1
COMMENTS
The smallest candidate for the next term in the b-file is A000931(1958), which is composite with 239 digits and an unknown number of prime factors. - Hugo Pfoertner, Sep 07 2017
LINKS
Eric Weisstein's World of Mathematics, Semiprime
MAPLE
select(x-> numtheory[bigomega](x)=2, [(<<0|1|0>,
<0|0|1>, <1|1|0>>^i)[1$2]$i=0..300])[]; # Alois P. Heinz, Aug 31 2017
MATHEMATICA
SemiprimeQ[1] := False SemiprimeQ[n_Integer] := Plus @@ (Last /@ FactorInteger[n]) == 2 a = Table[ SeriesCoefficient[ Series[x/(1 - x^2 - x^3), {x, 0, 50}], n], {n, 0, 50}] f[n_] = If[SemiprimeQ[a[[n]]] == True, a[[n]], {}] Flatten[Table[f[n], {n, 1, Length[a]}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 15 2006
EXTENSIONS
More terms from Alois P. Heinz, Aug 31 2017
STATUS
approved